Metformin Mitigates the Impact of Arsenic Exposure on the Maternal and Offspring Reproductive System of Female Mice.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Razieh Bagheri, Seyyed Sajad Daneshi, Samaneh Bina, Marziyeh Haghshenas, Mohammad Javad Khoshnoud, Seyedeh Leili Asadi-Yousefabad, Forouzan Khodaei, Marzieh Rashedinia
{"title":"Metformin Mitigates the Impact of Arsenic Exposure on the Maternal and Offspring Reproductive System of Female Mice.","authors":"Razieh Bagheri, Seyyed Sajad Daneshi, Samaneh Bina, Marziyeh Haghshenas, Mohammad Javad Khoshnoud, Seyedeh Leili Asadi-Yousefabad, Forouzan Khodaei, Marzieh Rashedinia","doi":"10.1007/s12011-025-04577-2","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to arsenic causes health problems and is associated with adverse effects on fertility and development. Humans are facing increasing exposure to arsenic from multiple sources, such as drinking water, food products, and industrial processes. The mechanisms behind arsenic-induced reproductive toxicity and its impact on fertility and the development of future generations are investigated by the protective role of metformin (200 mg/kg) against arsenic-induced (20 ppm As<sub>2</sub>O<sub>3</sub>) ovarian damage in both maternal and offspring generations. Results showed arsenic exposure caused significant weight loss, increased mortality, reduced serum anti-Mullerian hormone (AMH) levels, and heightened oxidative stress, indicated by increased reactive oxygen species (ROS), malondialdehyde (MDA), and reduced ovarian antioxidant activity. Gene expression changes related to apoptosis and inflammation, such as BAX, Bcl-2, Bcl-2, caspase-3, tumor necrosis factor-alpha (TNF-α), and interleukin-1 (IL-1), were also noted, along with a decrease in HO-1 expression. Arsenic exposure led to a reduction in ovarian follicles and an increase in atretic follicles and uterine thickness. However, metformin significantly reduced ROS and MDA levels, enhanced antioxidant capacity, and protected ovarian tissue by upregulating heme oxygenase-1 (HO-1) and Bcl-2, modulating apoptotic and inflammatory genes, and preserving AMH levels. The possible protective role of metformin against arsenic-induced toxicity and its detrimental effects aims to improve therapeutic approaches to alleviate the harmful consequences of environmental pollutants, especially arsenic.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-025-04577-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Exposure to arsenic causes health problems and is associated with adverse effects on fertility and development. Humans are facing increasing exposure to arsenic from multiple sources, such as drinking water, food products, and industrial processes. The mechanisms behind arsenic-induced reproductive toxicity and its impact on fertility and the development of future generations are investigated by the protective role of metformin (200 mg/kg) against arsenic-induced (20 ppm As2O3) ovarian damage in both maternal and offspring generations. Results showed arsenic exposure caused significant weight loss, increased mortality, reduced serum anti-Mullerian hormone (AMH) levels, and heightened oxidative stress, indicated by increased reactive oxygen species (ROS), malondialdehyde (MDA), and reduced ovarian antioxidant activity. Gene expression changes related to apoptosis and inflammation, such as BAX, Bcl-2, Bcl-2, caspase-3, tumor necrosis factor-alpha (TNF-α), and interleukin-1 (IL-1), were also noted, along with a decrease in HO-1 expression. Arsenic exposure led to a reduction in ovarian follicles and an increase in atretic follicles and uterine thickness. However, metformin significantly reduced ROS and MDA levels, enhanced antioxidant capacity, and protected ovarian tissue by upregulating heme oxygenase-1 (HO-1) and Bcl-2, modulating apoptotic and inflammatory genes, and preserving AMH levels. The possible protective role of metformin against arsenic-induced toxicity and its detrimental effects aims to improve therapeutic approaches to alleviate the harmful consequences of environmental pollutants, especially arsenic.

二甲双胍能减轻砷暴露对雌性小鼠母体和后代生殖系统的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信