BMC Biotechnology最新文献

筛选
英文 中文
Recombinant human enamelin produced in Escherichia coli promotes mineralization in vitro. 在大肠杆菌中生产的重组人牙釉质素能促进体外矿化。
IF 3.5 3区 生物学
BMC Biotechnology Pub Date : 2024-07-09 DOI: 10.1186/s12896-024-00875-0
Monalissa Halablab, Lovisa Wallman, Johan Bonde
{"title":"Recombinant human enamelin produced in Escherichia coli promotes mineralization in vitro.","authors":"Monalissa Halablab, Lovisa Wallman, Johan Bonde","doi":"10.1186/s12896-024-00875-0","DOIUrl":"10.1186/s12896-024-00875-0","url":null,"abstract":"<p><strong>Background: </strong>Enamelin is an enamel matrix protein that plays an essential role in the formation of enamel, the most mineralized tissue in the human body. Previous studies using animal models and proteins from natural sources point to a key role of enamelin in promoting mineralization events during enamel formation. However, natural sources of enamelin are scarce and with the current study we therefore aimed to establish a simple microbial production method for recombinant human enamelin to support its use as a mineralization agent.</p><p><strong>Results: </strong>In the study the 32 kDa fragment of human enamelin was successfully expressed in Escherichia coli and could be obtained using immobilized metal ion affinity chromatography purification (IMAC), dialysis, and lyophilization. This workflow resulted in a yield of approximately 10 mg enamelin per liter culture. Optimal conditions for IMAC purification were obtained using Ni<sup>2+</sup> as the metal ion, and when including 30 mM imidazole during binding and washing steps. Furthermore, in vitro mineralization assays demonstrated that the recombinant enamelin could promote calcium phosphate mineralization at a concentration of 0.5 mg/ml.</p><p><strong>Conclusions: </strong>These findings address the scarcity of enamelin by facilitating its accessibility for further investigations into the mechanism of enamel formation and open new avenues for developing enamel-inspired mineralized biomaterials.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"48"},"PeriodicalIF":3.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections. 万古霉素载药纳米给药系统对耐甲氧西林金黄色葡萄球菌(MRSA)感染的抗菌和抗生物膜潜力。
IF 3.5 3区 生物学
BMC Biotechnology Pub Date : 2024-07-08 DOI: 10.1186/s12896-024-00874-1
Jaber Hemmati, Mohsen Chiani, Babak Asghari, Ghodratollah Roshanaei, Sara Soleimani Asl, Morvarid Shafiei, Mohammad Reza Arabestani
{"title":"Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections.","authors":"Jaber Hemmati, Mohsen Chiani, Babak Asghari, Ghodratollah Roshanaei, Sara Soleimani Asl, Morvarid Shafiei, Mohammad Reza Arabestani","doi":"10.1186/s12896-024-00874-1","DOIUrl":"10.1186/s12896-024-00874-1","url":null,"abstract":"<p><p>The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"47"},"PeriodicalIF":3.5,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimisation of indole acetic acid production by Neopestalotiopsis aotearoa endophyte isolated from Thymus vulgaris and its impact on seed germination of Ocimum basilicum. 从寻常百里香中分离出的 Neopestalotiopsis aotearoa 内生菌产生吲哚乙酸的优化及其对欧芹种子萌发的影响。
IF 3.5 3区 生物学
BMC Biotechnology Pub Date : 2024-07-06 DOI: 10.1186/s12896-024-00872-3
Sayeda A Abdelhamid, Mostafa M Abo Elsoud, A F El-Baz, Ashraf M Nofal, Heba Y El-Banna
{"title":"Optimisation of indole acetic acid production by Neopestalotiopsis aotearoa endophyte isolated from Thymus vulgaris and its impact on seed germination of Ocimum basilicum.","authors":"Sayeda A Abdelhamid, Mostafa M Abo Elsoud, A F El-Baz, Ashraf M Nofal, Heba Y El-Banna","doi":"10.1186/s12896-024-00872-3","DOIUrl":"10.1186/s12896-024-00872-3","url":null,"abstract":"<p><strong>Background: </strong>Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites.</p><p><strong>Results: </strong>The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, \"MOS + tryptophan\" was chosen that gave 18.02 μg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements.</p><p><strong>Conclusions: </strong>The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"46"},"PeriodicalIF":3.5,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a novel multi-epitope vaccine against Marburg virus using immunoinformatics studies. 利用免疫信息学研究设计新型多表位马尔堡病毒疫苗。
IF 3.5 3区 生物学
BMC Biotechnology Pub Date : 2024-07-05 DOI: 10.1186/s12896-024-00873-2
Fouad Qasim Jubair Al-Zayadi, Ali S Shakir, Ahmed Shayaa Kareem, Abdolmajid Ghasemian, Esmaeil Behmard
{"title":"Design of a novel multi-epitope vaccine against Marburg virus using immunoinformatics studies.","authors":"Fouad Qasim Jubair Al-Zayadi, Ali S Shakir, Ahmed Shayaa Kareem, Abdolmajid Ghasemian, Esmaeil Behmard","doi":"10.1186/s12896-024-00873-2","DOIUrl":"10.1186/s12896-024-00873-2","url":null,"abstract":"<p><p>Marburg virus (MARV) is a highly contagious and virulent agent belonging to Filoviridae family. MARV causes severe hemorrhagic fever in humans and non-human primates. Owing to its highly virulent nature, preventive approaches are promising for its control. There is currently no approved drug or vaccine against MARV, and management mainly involves supportive care to treat symptoms and prevent complications. Our aim was to design a novel multi-epitope vaccine (MEV) against MARV using immunoinformatics studies. In this study, various proteins (VP35, VP40 and glycoprotein precursor) were used and potential epitopes were selected. CTL and HTL epitopes covered 79.44% and 70.55% of the global population, respectively. The designed MEV construct was stable and expressed in Escherichia coli (E. coli) host. The physicochemical properties were also acceptable. MARV MEV candidate could predict comprehensive immune responses such as those of humoral and cellular in silico. Additionally, efficient interaction to toll-like receptor 3 (TLR3) and its agonist (β-defensin) was predicted. There is a need for validation of these results using further in vitro and in vivo studies.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"45"},"PeriodicalIF":3.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased stable integration efficiency in CHO cells through enhanced nuclear localization of Bxb1 serine integrase. 通过增强 Bxb1 丝氨酸整合酶的核定位,提高 CHO 细胞中的稳定整合效率。
IF 3.5 3区 生物学
BMC Biotechnology Pub Date : 2024-06-26 DOI: 10.1186/s12896-024-00871-4
Olli Huhtinen, Stuart Prince, Urpo Lamminmäki, Rune Salbo, Antti Kulmala
{"title":"Increased stable integration efficiency in CHO cells through enhanced nuclear localization of Bxb1 serine integrase.","authors":"Olli Huhtinen, Stuart Prince, Urpo Lamminmäki, Rune Salbo, Antti Kulmala","doi":"10.1186/s12896-024-00871-4","DOIUrl":"10.1186/s12896-024-00871-4","url":null,"abstract":"<p><strong>Background: </strong>Mammalian display is an appealing technology for therapeutic antibody development. Despite the advantages of mammalian display, such as full-length IgG display with mammalian glycosylation and its inherent ability to select antibodies with good biophysical properties, the restricted library size and large culture volumes remain challenges. Bxb1 serine integrase is commonly used for the stable genomic integration of antibody genes into mammalian cells, but presently lacks the efficiency required for the display of large mammalian display libraries. To increase the Bxb1 integrase-mediated stable integration efficiency, our study investigates factors that potentially affect the nuclear localization of Bxb1 integrase.</p><p><strong>Methods: </strong>In an attempt to enhance Bxb1 serine integrase-mediated integration efficiency, we fused various nuclear localization signals (NLS) to the N- and C-termini of the integrase. Concurrently, we co-expressed multiple proteins associated with nuclear transport to assess their impact on the stable integration efficiency of green fluorescent protein (GFP)-encoding DNA and an antibody display cassette into the genome of Chinese hamster ovary (CHO) cells containing a landing pad for Bxb1 integrase-mediated integration.</p><p><strong>Results: </strong>The nucleoplasmin NLS from Xenopus laevis, when fused to the C-terminus of Bxb1 integrase, demonstrated the highest enhancement in stable integration efficiency among the tested NLS fusions, exhibiting over a 6-fold improvement compared to Bxb1 integrase lacking an NLS fusion. Subsequent additions of extra NLS fusions to the Bxb1 integrase revealed an additional 131% enhancement in stable integration efficiency with the inclusion of two copies of C-terminal nucleoplasmin NLS fusions. Further improvement was achieved by co-expressing the Ran GTPase-activating protein (RanGAP). Finally, to validate the applicability of these findings to more complex proteins, the DNA encoding the membrane-bound clinical antibody abrilumab was stably integrated into the genome of CHO cells using Bxb1 integrase with two copies of C-terminal nucleoplasmin NLS fusions and co-expression of RanGAP. This approach demonstrated over 14-fold increase in integration efficiency compared to Bxb1 integrase lacking an NLS fusion.</p><p><strong>Conclusions: </strong>This study demonstrates that optimizing the NLS sequence fusion for Bxb1 integrase significantly enhances the stable genomic integration efficiency. These findings provide a practical approach for constructing larger libraries in mammalian cells through the stable integration of genes into a genomic landing pad.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"44"},"PeriodicalIF":3.5,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of Candida spp. in wastewater in Brazil during COVID-19 pandemic: workflow for monitoring fungal pathogens. COVID-19 大流行期间巴西废水中念珠菌属的筛查:监测真菌病原体的工作流程。
IF 3.5 3区 生物学
BMC Biotechnology Pub Date : 2024-06-22 DOI: 10.1186/s12896-024-00868-z
Danielly Corrêa-Moreira, Gisela Lara da Costa, Reginaldo Gonçalves de Lima Neto, Tatiana Pinto, Bruna Salomão, Tulio Machado Fumian, Camille Ferreira Mannarino, Tatiana Prado, Marize Pereira Miagostovich, Lívia de Souza Ramos, André Luis Souza Dos Santos, Manoel Marques Evangelista Oliveira
{"title":"Screening of Candida spp. in wastewater in Brazil during COVID-19 pandemic: workflow for monitoring fungal pathogens.","authors":"Danielly Corrêa-Moreira, Gisela Lara da Costa, Reginaldo Gonçalves de Lima Neto, Tatiana Pinto, Bruna Salomão, Tulio Machado Fumian, Camille Ferreira Mannarino, Tatiana Prado, Marize Pereira Miagostovich, Lívia de Souza Ramos, André Luis Souza Dos Santos, Manoel Marques Evangelista Oliveira","doi":"10.1186/s12896-024-00868-z","DOIUrl":"10.1186/s12896-024-00868-z","url":null,"abstract":"<p><p>Fungal diseases are often linked to poverty, which is associated with poor hygiene and sanitation conditions that have been severely worsened by the COVID-19 pandemic. Moreover, COVID-19 patients are treated with Dexamethasone, a corticosteroid that promotes an immunosuppressive profile, making patients more susceptible to opportunistic fungal infections, such as those caused by Candida species. In this study, we analyzed the prevalence of Candida yeasts in wastewater samples collected to track viral genetic material during the COVID-19 pandemic and identified the yeasts using polyphasic taxonomy. Furthermore, we investigated the production of biofilm and hydrolytic enzymes, which are known virulence factors. Our findings revealed that all Candida species could form biofilms and exhibited moderate hydrolytic enzyme activity. We also proposed a workflow for monitoring wastewater using Colony PCR instead of conventional PCR, as this technique is fast, cost-effective, and reliable. This approach enhances the accurate taxonomic identification of yeasts in environmental samples, contributing to environmental monitoring as part of the One Health approach, which preconizes the monitoring of possible emergent pathogenic microorganisms, including fungi.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"43"},"PeriodicalIF":3.5,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transgenic Arabidopsis thaliana plants expressing bacterial γ-hexachlorocyclohexane dehydrochlorinase LinA. 表达细菌γ-六氯环己烷脱氢氯蛋白酶 LinA 的转基因拟南芥植物。
IF 3.5 3区 生物学
BMC Biotechnology Pub Date : 2024-06-19 DOI: 10.1186/s12896-024-00867-0
Wenhao Deng, Yoshinobu Takada, Yoshihiko Nanasato, Kouhei Kishida, Leonardo Stari, Yoshiyuki Ohtsubo, Yutaka Tabei, Masao Watanabe, Yuji Nagata
{"title":"Transgenic Arabidopsis thaliana plants expressing bacterial γ-hexachlorocyclohexane dehydrochlorinase LinA.","authors":"Wenhao Deng, Yoshinobu Takada, Yoshihiko Nanasato, Kouhei Kishida, Leonardo Stari, Yoshiyuki Ohtsubo, Yutaka Tabei, Masao Watanabe, Yuji Nagata","doi":"10.1186/s12896-024-00867-0","DOIUrl":"10.1186/s12896-024-00867-0","url":null,"abstract":"<p><strong>Background: </strong>γ-Hexachlorocyclohexane (γ-HCH), an organochlorine insecticide of anthropogenic origin, is a persistent organic pollutant (POP) that causes environmental pollution concerns worldwide. Although many γ-HCH-degrading bacterial strains are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the low survival rate of the exogenous bacteria. Another strategy for the bioremediation of γ-HCH involves the use of transgenic plants expressing bacterial enzyme for γ-HCH degradation through phytoremediation.</p><p><strong>Results: </strong>We generated transgenic Arabidopsis thaliana expressing γ-HCH dehydrochlroninase LinA from bacterium Sphingobium japonicum strain UT26. Among the transgenic Arabidopsis T2 lines, we obtained one line (A5) that expressed and accumulated LinA well. The A5-derived T3 plants showed higher tolerance to γ-HCH than the non-transformant control plants, indicating that γ-HCH is toxic for Arabidopsis thaliana and that this effect is relieved by LinA expression. The crude extract of the A5 plants showed γ-HCH degradation activity, and metabolites of γ-HCH produced by the LinA reaction were detected in the assay solution, indicating that the A5 plants accumulated the active LinA protein. In some A5 lines, the whole plant absorbed and degraded more than 99% of γ-HCH (10 ppm) in the liquid medium within 36 h.</p><p><strong>Conclusion: </strong>The transgenic Arabidopsis expressing active LinA absorbed and degraded γ-HCH in the liquid medium, indicating the high potential of LinA-expressing transgenic plants for the phytoremediation of environmental γ-HCH. This study marks a crucial step toward the practical use of transgenic plants for the phytoremediation of POPs.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"42"},"PeriodicalIF":3.5,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186250/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and agro-morphological characterization of new barley genotypes in arid environments. 干旱环境中新大麦基因型的分子和农业形态特征。
IF 3.5 3区 生物学
BMC Biotechnology Pub Date : 2024-06-11 DOI: 10.1186/s12896-024-00861-6
Adel A Elshafei, Eid I Ibrahim, Kamal F Abdellatif, Abd El-Azeem K Salem, Khaled A Moustafa, Abdullah A Al-Doss, Hussein M Migdadi, Amal M Hussien, Walid Soufan, Taha Abd El Rahman, Samah M Eldemery
{"title":"Molecular and agro-morphological characterization of new barley genotypes in arid environments.","authors":"Adel A Elshafei, Eid I Ibrahim, Kamal F Abdellatif, Abd El-Azeem K Salem, Khaled A Moustafa, Abdullah A Al-Doss, Hussein M Migdadi, Amal M Hussien, Walid Soufan, Taha Abd El Rahman, Samah M Eldemery","doi":"10.1186/s12896-024-00861-6","DOIUrl":"10.1186/s12896-024-00861-6","url":null,"abstract":"<p><strong>Background: </strong>Genetic diversity, population structure, agro-morphological traits, and molecular characteristics, are crucial for either preserving genetic resources or developing new cultivars. Due to climate change, water availability for agricultural use is progressively diminishing. This study used 100 molecular markers (25 TRAP, 22 SRAP, 23 ISTR, and 30 SSR). Additionally, 15 morphological characteristics were utilized to evaluate the optimal agronomic traits of 12 different barley genotypes under arid conditions.</p><p><strong>Results: </strong>Substantial variations, ranging from significant to highly significant, were observed in the 15 agromorphological parameters evaluated among the 12 genotypes. The KSU-B101 barley genotype demonstrated superior performance in five specific traits: spike number per plant, 100-grain weight, spike number per square meter, harvest index, and grain yield. These results indicate its potential for achieving high yields in arid regions. The Sahrawy barley genotype exhibited the highest values across five parameters, namely leaf area, spike weight per plant, spike length, spike weight per square meter, and biological yield, making it a promising candidate for animal feed. The KSU-B105 genotype exhibited early maturity and a high grain count per spike, which reflects its early maturity and ability to produce a high number of grains per spike. This suggests its suitability for both animal feed and human food in arid areas. Based on marker data, the molecular study found that the similarity coefficients between the barley genotypes ranged from 0.48 to 0.80, with an average of 0.64. The dendrogram constructed from these data revealed three distinct clusters with a similarity coefficient of 0.80. Notably, the correlation between the dendrogram and its similarity matrix was high (0.903), indicating its accuracy in depicting the genetic relationships. The combined analysis revealed a moderate correlation between the morphological and molecular analysis, suggesting alignment between the two characterization methods.</p><p><strong>Conclusions: </strong>The morphological and molecular analyses of the 12 barley genotypes in this study effectively revealed the varied genetic characteristics of their agro-performance in arid conditions. KSU-B101, Sahrawy, and KSU-B105 have emerged as promising candidates for different agricultural applications in arid regions. Further research on these genotypes could reveal their full potential for breeding programs.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"41"},"PeriodicalIF":3.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement and prediction of the extraction parameters of lupeol and stigmasterol metabolites of Melia azedarach with response surface methodology. 用响应面方法改进和预测香叶木的羽扇豆醇和豆甾醇代谢物的提取参数。
IF 3.5 3区 生物学
BMC Biotechnology Pub Date : 2024-06-07 DOI: 10.1186/s12896-024-00865-2
Vahid Rabbani, Ghasem-Ali Garoosi, Raheem Haddad, Reza Farjaminezhad, Reza Heidari Japelaghi
{"title":"Improvement and prediction of the extraction parameters of lupeol and stigmasterol metabolites of Melia azedarach with response surface methodology.","authors":"Vahid Rabbani, Ghasem-Ali Garoosi, Raheem Haddad, Reza Farjaminezhad, Reza Heidari Japelaghi","doi":"10.1186/s12896-024-00865-2","DOIUrl":"10.1186/s12896-024-00865-2","url":null,"abstract":"<p><strong>Background: </strong>Melia azedarach is known as a medicinal plant that has wide biological activities such as analgesic, antibacterial, and antifungal effects and is used to treat a wide range of diseases such as diarrhea, malaria, and various skin diseases. However, optimizing the extraction of valuable secondary metabolites of M. azedarach using alternative extraction methods has not been investigated. This research aims to develop an effective, fast, and environmentally friendly extraction method using Ultrasound-assisted extraction, methanol and temperature to optimize the extraction of two secondary metabolites, lupeol and stigmasterol, from young roots of M. azedarach using the response surface methodology.</p><p><strong>Methods: </strong>Box-behnken design was applied to optimize different factors (solvent, temperature, and ultrasonication time). The amounts of lupeol and stigmasterol in the root of M. azedarach were detected by the HPLC-DAD. The required time for the analysis of each sample by the HPLC-DAD system was considered to be 8 min.</p><p><strong>Results: </strong>The results indicated that the highest amount of lupeol (7.82 mg/g DW) and stigmasterol (6.76 mg/g DW) was obtained using 50% methanol at 45 °C and ultrasonication for 30 min, and 50% methanol in 35 °C, and ultrasonication for 30 min, respectively. Using the response surface methodology, the predicted conditions for lupeol and stigmasterol from root of M. azedarach were as follows; lupeol: 100% methanol, temperature 45 °C and ultrasonication time 40 min (14.540 mg/g DW) and stigmasterol 43.75% methanol, temperature 34.4 °C and ultrasonication time 25.3 min (5.832 mg/g DW).</p><p><strong>Conclusions: </strong>The results showed that the amount of secondary metabolites lupeol and stigmasterol in the root of M. azedarach could be improved by optimizing the extraction process utilizing response surface methodology.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"39"},"PeriodicalIF":3.5,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microvesicles-delivering Smad7 have advantages over microvesicles in suppressing fibroblast differentiation in a model of Peyronie's disease. 在佩罗尼氏病模型中,递送 Smad7 的微囊在抑制成纤维细胞分化方面比微囊更有优势。
IF 3.5 3区 生物学
BMC Biotechnology Pub Date : 2024-06-07 DOI: 10.1186/s12896-024-00866-1
Wenting Wang, Fengchun Wan, Tianxi Yu, Shuang Wu, Xin Cui, Chongjun Xiang, Monong Li, Qingzuo Liu, Chunhua Lin
{"title":"Microvesicles-delivering Smad7 have advantages over microvesicles in suppressing fibroblast differentiation in a model of Peyronie's disease.","authors":"Wenting Wang, Fengchun Wan, Tianxi Yu, Shuang Wu, Xin Cui, Chongjun Xiang, Monong Li, Qingzuo Liu, Chunhua Lin","doi":"10.1186/s12896-024-00866-1","DOIUrl":"10.1186/s12896-024-00866-1","url":null,"abstract":"<p><strong>Background: </strong>This study compared the differences of microvesicles (MVs) and microvesicles-delivering Smad7 (Smad7-MVs) on macrophage M1 polarization and fibroblast differentiation in a model of Peyronie's disease (PD).</p><p><strong>Methods: </strong>Overexpression of Smad7 in rat BMSCs was obtained by pCMV5-Smad7 transfection. MVs were collected from rat BMSCs using ultracentrifugation. In cells, 100 µg/mL of MVs or Smad7-MVs were used to treat the 100 ng/mL of lipopolysaccharide (LPS)-induced RAW264.7 cells or 10 ng/mL of recombinant transforming growth factor-β1 (TGF-β1)-induced fibroblasts. The pro-inflammatory cytokines and markers of M1 macrophages were measured in RAW264.7 cells, and the migration and markers of fibroblast differentiation were measured in fibroblasts. In rats, 50 µg of MVs or Smad7-MVs were used to treat the TGF-β1-induced animals. The pathology of tunica albuginea (TA), the markers of M1 macrophages and fibroblast differentiation in the TA were measured.</p><p><strong>Results: </strong>The MVs or Smad7-MVs treatment suppressed the LPS-induced macrophage M1 polarization and TGF-β1-induced fibroblast differentiation. Moreover, the Smad7-MVs treatment decreased the fibroblast differentiation compared with the MVs treatment. In the TGF-β1-induced TA of rats, MVs or Smad7-MVs treatment ameliorated the TA fibrosis by suppressing the macrophage M1 polarization and fibroblast differentiation. There was no significance on the M1-polarized macrophages between the MVs treatment and the Smad7-MVs treatment. Meanwhile, the Smad7-MVs treatment had an edge in terms of suppressing the fibroblast differentiation in the TGF-β1-induced PD model compared with the MVs treatment.</p><p><strong>Conclusions: </strong>This study demonstrated that Smad7-MVs treatment had advantages over MVs treatment in suppressing of fibroblast differentiation in a model of PD.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"40"},"PeriodicalIF":3.5,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信