{"title":"Fibromodulin-overexpressing fibroblast cells increase wound contraction, improve scar quality and enhance angiogenesis: an in-vivo study.","authors":"Negar Abdollahzadeh, Mehran Vatanchian, Fatemeh Oroojalian, Seyed Ehsan Enderami, Amir Amani, Reza Salarinia","doi":"10.1186/s12896-025-00975-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Fibromodulin, a small leucine rich proteoglycan has been suggested to have prominent role in wound healing. On the other hand, fibroblast cells, due to their ability to secrete growth factors and control inflammation in the wound area, have been proposed as effective approaches in cell therapy for wounds. In the current study we attempted to improve treatment results using a combination of fibroblast and fibromodulin features.</p><p><strong>Method: </strong>Fibroblast cells were isolated from the skin and transfected with a vector carrying the fibromodulin gene. Following the assessment of fibromodulin protein production, the effect of transfected fibroblast cells was studied in an animal wound model.</p><p><strong>Results: </strong>Flow cytometry analysis showed high expression of the CD90 marker (97.2%) and very low expression of the CD34 marker (0.47%). Additionally, enzyme-linked immunosorbent assay (ELISA) findings confirmed high expression of the fibromodulin gene in the transfected fibroblast cells. In vivo studies demonstrated that the animals treated with fibroblast cells transfected with fibromodulin (V + G+) exhibited significantly improved wound contraction on day 7 (i.e., contraction percentage: 21.79 ± 9.96%, compared with 7.23 ± 2.30% in the PBS-treated group). Histopathological studies also indicated improvements in angiogenesis score and collagen density score in the animals treated with the V + G + group.</p><p><strong>Conclusion: </strong>The results of this study showed that fibroblast cells expressing the fibromodulin gene improve wound contraction and some histological parameters in the deep wound model of the rat.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"25 1","pages":"40"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-025-00975-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Fibromodulin, a small leucine rich proteoglycan has been suggested to have prominent role in wound healing. On the other hand, fibroblast cells, due to their ability to secrete growth factors and control inflammation in the wound area, have been proposed as effective approaches in cell therapy for wounds. In the current study we attempted to improve treatment results using a combination of fibroblast and fibromodulin features.
Method: Fibroblast cells were isolated from the skin and transfected with a vector carrying the fibromodulin gene. Following the assessment of fibromodulin protein production, the effect of transfected fibroblast cells was studied in an animal wound model.
Results: Flow cytometry analysis showed high expression of the CD90 marker (97.2%) and very low expression of the CD34 marker (0.47%). Additionally, enzyme-linked immunosorbent assay (ELISA) findings confirmed high expression of the fibromodulin gene in the transfected fibroblast cells. In vivo studies demonstrated that the animals treated with fibroblast cells transfected with fibromodulin (V + G+) exhibited significantly improved wound contraction on day 7 (i.e., contraction percentage: 21.79 ± 9.96%, compared with 7.23 ± 2.30% in the PBS-treated group). Histopathological studies also indicated improvements in angiogenesis score and collagen density score in the animals treated with the V + G + group.
Conclusion: The results of this study showed that fibroblast cells expressing the fibromodulin gene improve wound contraction and some histological parameters in the deep wound model of the rat.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.