Biopolymers最新文献

筛选
英文 中文
Fabrication of bacterial cellulose/PVP nanofiber composites by electrospinning 利用电纺丝技术制造细菌纤维素/PVP 纳米纤维复合材料。
IF 3.2 4区 生物学
Biopolymers Pub Date : 2024-06-18 DOI: 10.1002/bip.23606
Nevra Pelin Cesur, Kosar Zad Ghaffari Vahdat, Nelisa Türkoğlu Laçin
{"title":"Fabrication of bacterial cellulose/PVP nanofiber composites by electrospinning","authors":"Nevra Pelin Cesur,&nbsp;Kosar Zad Ghaffari Vahdat,&nbsp;Nelisa Türkoğlu Laçin","doi":"10.1002/bip.23606","DOIUrl":"10.1002/bip.23606","url":null,"abstract":"<p>This study aimed to address a significant challenge in the application of bacterial cellulose (BC) within tissue engineering and regenerative medicine by tackling its inherent insolubility in water and organic solvents. Our team introduced a groundbreaking approach by utilizing zinc sulfate (ZnSO<sub>4</sub>) as a solvent to render BC soluble, a novel contribution to the literature. Subsequently, the obtained soluble BC was combined with varying concentrations of polyvinylpyrrolidone (PVP). Notably, we pioneered the fabrication of BC/PVP composite scaffolds with customizable fiber surface morphology and regulated degradation rates through the electrospun technique. Several key parameters, such as PVP concentration (8%, 15%, 12%, and 20% w/v), applied voltage (22, 15, and 12 kV), and a fixed nozzle-collector distance of 10 cm with a flow rate of 0.9 mL/h, were systematically evaluated so as to find the optimum parameter created BC/PVP product with electrospun. For electrospun BC/PVP products, a voltage of 12 kV was found to be optimal. Intriguingly, our findings revealed enhanced cell adhesion and proliferation in BC/PVP electrospun products compared with using PVP membranes alone. Specifically, cell viability for PVP and PVP/BC electrospun products was determined as 50.73% and 79.95%, respectively. In terms of thermal properties, the BC/PVP electrospun product exhibited a mass loss of 82.6% at 380°C, while PVP alone experienced 90.2% mass loss at around 280°C. Furthermore, the protein adhesion capacities were measured at 62.3 ± 1.2 μg for PVP and 99.4 ± 2 μg for BC/PVP electrospun products, whereas product showed no biodegradation over 28 days and had notable water retention capacity. In conclusion, our research not only successfully attained nanofiber morphology but also showcased enhanced cell attachment and proliferation on the BC/PVP electrospun product.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of irradiated chitosan and microbial agent to reduce downy mildew on grapevine cv. Thompson seedless 将辐照壳聚糖和微生物制剂结合使用,减少葡萄树上的霜霉病。汤普森无籽葡萄
IF 3.2 4区 生物学
Biopolymers Pub Date : 2024-06-18 DOI: 10.1002/bip.23603
Mahadev Khatal, Tanaji Narute, Rakesh Sonawane, Vikas Bhalerao, Sunil Dalvi
{"title":"Combination of irradiated chitosan and microbial agent to reduce downy mildew on grapevine cv. Thompson seedless","authors":"Mahadev Khatal,&nbsp;Tanaji Narute,&nbsp;Rakesh Sonawane,&nbsp;Vikas Bhalerao,&nbsp;Sunil Dalvi","doi":"10.1002/bip.23603","DOIUrl":"10.1002/bip.23603","url":null,"abstract":"<p>Globally sustainable disease management ensuring high quality in grapes is in demand as it holds significant importance as a versatile fruit for consumption, winemaking, and production of various products such as grape juice, raisin, and grape-seed oil. The present paper reports a combination of nano-biotechnology as a promising strategy for enhancing plant health and fruit productivity in grapes combining Irradiated chitosan nanoparticles and bio-control agents. The Irradiated Chitosan with <i>Bacillus subtilis</i> and <i>Trichoderma viridae</i> and pesticides were evaluated for disease management. Percent disease index, percent disease control, and percent yield enhancement in Cymoxanil 8% + Mamcozeb 64% WP @ 0.2% treatment were as 17. 24%, 67.97% and 33.91% in 150 ppm Irradiated chitosan+<i>B. subtilis</i> were 19.83, 63.16, 30.41 and in <i>Trichoderma</i> 150 ppm Irradiated chitosan were 24.58, 54.33, and 27.40, respectively as compared to untreated crop with disease severity 53.84% PDI. Thus, irradiated chitosan and <i>Bacillus subtilis</i> elucidated a synergistic combination for residue-free efficient phytosanitary measures, which harnessed the strength of chitosan and bio-control agents for sustainable grape productivity. These findings will also pave the way for a deeper understanding of the synergistic interaction between Irradiated nanochitosan and bio-control agents for an eco-friendly and economically viable disease management strategy. The minimum temperature and morning relative humidity (RH I) had positive significance, with correlation coefficients of 0.484 and 0.485, respectively. The evening relative humidity (RH II) had a positive highly significant positive correlation coefficient of 0.664. Chitosan merits as a multiple stress tolerance enhancing agent that will further help in mitigating climate change adaptations in grapevines reducing reliance on chemical agro-inputs.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and characterization of bis-phosphonated polycarbohydrates 双膦酸化多碳水化合物的制备和表征。
IF 3.2 4区 生物学
Biopolymers Pub Date : 2024-06-17 DOI: 10.1002/bip.23607
Kamila Sadowska, Marta Prześniak-Welenc, Marcin Łapiński
{"title":"Preparation and characterization of bis-phosphonated polycarbohydrates","authors":"Kamila Sadowska,&nbsp;Marta Prześniak-Welenc,&nbsp;Marcin Łapiński","doi":"10.1002/bip.23607","DOIUrl":"10.1002/bip.23607","url":null,"abstract":"<p>A simple, cost-effective, one-pot method was proposed to introduce <i>bis</i>-phosphonic groups onto alginic acid and carboxymethyl cellulose (CMC). New derivatives were characterized by means of nuclear magnetic resonance, X-ray photoelectron, and attenuated total reflectance Fourier transform infrared spectroscopy. These analyses confirmed the successful transformation of carboxylic groups present in alginic acid and CMC into <i>bis</i>-phosphonic groups. Additionally, thermogravimetric analysis coupled with differential scanning calorimetry was employed to investigate the thermal properties of the <i>bis</i>-phosphonic derivatives of alginate and CMC. The results clearly demonstrate the char-forming ability of both studied <i>bis</i>-phosphonated polycarbohydrates, suggesting their potential as intumescent materials.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of the sensitization effect of Chaihu Shugan powder on chemotherapy for triple-negative breast cancer and its active ingredients 柴胡舒筋粉对三阴性乳腺癌化疗的增敏作用及其有效成分探讨
IF 3.2 4区 生物学
Biopolymers Pub Date : 2024-06-12 DOI: 10.1002/bip.23605
Wei Wei, Xiaofei Li, Zhiyuan Li
{"title":"Exploration of the sensitization effect of Chaihu Shugan powder on chemotherapy for triple-negative breast cancer and its active ingredients","authors":"Wei Wei,&nbsp;Xiaofei Li,&nbsp;Zhiyuan Li","doi":"10.1002/bip.23605","DOIUrl":"10.1002/bip.23605","url":null,"abstract":"<p>Chemotherapy plays a crucial role in the clinical treatment of triple-negative breast cancer (TNBC), but drug resistance limits its clinical application. The active ingredients of Chaihu Shugan Powder (CSP; Bupleurum Liver-Coursing Powder), quercetin and luteolin, both belong to flavonoid compounds and have significant anti-tumor potential, which can promote chemotherapy sensitivity. However, the correlation between the two and TNBC paclitaxel (PTX) chemotherapy sensitivity is unknown. We collected herbal components of CSP from the TCMSP database, and screened effective molecules and corresponding targets. STRING database was utilized to construct a protein–protein interaction network combining effective molecules and target genes. The top 50 nodes ranked by affinity were chosen for subsequent functional analysis, and the drug-active ingredient-gene interaction network was established using Cytoscape software. Molecular docking was used to determine the small molecules that target TNBC PTX resistance. The “clusterProfiler” package was utilized for GO and KEGG enrichment analyses on the top 50 genes to determine the pathways affected by CSP. Cell counting and colony formation assays evaluated cell viability, IC<sub>50</sub> values, and proliferation capacity. Flow cytometry tested PTX intracellular accumulation. Western blot assayed the expression of TNF pathway-related proteins. Active ingredients of CSP, quercetin and luteolin, could inhibit TNBC cell proliferation and promote PTX chemotherapy sensitization. Quercetin and luteolin repressed the TNF signaling pathway and promoted PTX chemotherapy sensitization. Quercetin and luteolin could inhibit TNBC cell proliferation and promote PTX chemotherapy sensitization through the TNF signaling pathway. Therefore, the use of quercetin and luteolin plus PTX treatment provides a prospective strategy for TNBC treatment.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the reinforcement effect by response surface methodology of holocellulose from spent coffee grounds on biopolymeric films as food packaging materials 通过响应面方法评估废咖啡渣中的全纤维素对作为食品包装材料的生物聚合物薄膜的增强效果。
IF 3.2 4区 生物学
Biopolymers Pub Date : 2024-06-07 DOI: 10.1002/bip.23585
Josué David Hernández-Varela, José Jorge Chanona-Pérez, Reza Foruzanmehr, Dora Iliana Medina
{"title":"Assessing the reinforcement effect by response surface methodology of holocellulose from spent coffee grounds on biopolymeric films as food packaging materials","authors":"Josué David Hernández-Varela,&nbsp;José Jorge Chanona-Pérez,&nbsp;Reza Foruzanmehr,&nbsp;Dora Iliana Medina","doi":"10.1002/bip.23585","DOIUrl":"10.1002/bip.23585","url":null,"abstract":"<p>The pollution caused by petroleum-derived plastic materials has become a major environmental problem that has encouraged the development of new compostable and environmentally friendly materials for food packaging based on biomodified polymers with household residues. This study aims to design, synthesize, and characterize a biobased polymeric microstructure film from polyvinyl alcohol and chitosan reinforced with holocellulose from spent coffee grounds for food-sustainable packaging. Chemical isolation with a chlorite-based solution was performed to obtain the reinforced holocellulose from the spent coffee ground, and the solvent casting method was used to obtain the films to study. Physicochemical and microscopic characterizations were conducted to identify and select the best formulations using a simplex-centroid design analysis. The response surface methodology results indicate that the new packaging material obtained with equal amounts of polymers and reinforced material (1:1:1) possesses the appropriate barrier properties and microstructural character to prevent water attack and hydrophobic behavior and thus could be used as an alternative for food packaging materials.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvent stabilizing effects on the order–disorder transition of schizophyllan in aqueous mixtures of carboxylic acids 溶剂对羧酸水性混合物中五味子苷阶-阶转变的稳定作用。
IF 3.2 4区 生物学
Biopolymers Pub Date : 2024-05-31 DOI: 10.1002/bip.23604
Kazuto Yoshiba, Yota Yasuda, Mana Sato, Yasuhiro Matsuda
{"title":"Solvent stabilizing effects on the order–disorder transition of schizophyllan in aqueous mixtures of carboxylic acids","authors":"Kazuto Yoshiba,&nbsp;Yota Yasuda,&nbsp;Mana Sato,&nbsp;Yasuhiro Matsuda","doi":"10.1002/bip.23604","DOIUrl":"10.1002/bip.23604","url":null,"abstract":"<p>Schizophyllan is a triple helical β-1,3-<sub>D</sub>-glucan, and shows the cooperative order–disorder transition in the aqueous solution at the triple helix state. In this paper, the solvent stabilizing effects of two carboxylic acids, acetic acid and citric acid, on the cooperative order–disorder transition of aqueous schizophyllan solution were investigated from DSC and SEC-MALS measurements. The transition temperature (<i>T</i><sub>r</sub>) was shifted to higher temperature with increasing the molar fraction of carboxylic acid in the mixture (<i>x</i>). The transition enthalpy (Δ<i>H</i><sub>r</sub>) was increased with increasing <i>x</i>. These solvent stabilizing effects indicate that these carboxylic acid molecules were selectively associated with the branched side chains of schizophyllan to stabilize the ordered state. The composition dependencies of <i>T</i><sub>r</sub> and Δ<i>H</i><sub>r</sub> were analyzed by the linear cooperative transition theory to estimate the association parameters between the side chains and carboxylic acid. The theoretical parameters obtained were compared with those for the other active substances for the transition to discuss the molecular interactions between the triple helix and carboxylic acid.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Starch-chitosan blends: A comprehensive review on the preparation, physicochemical properties and applications 淀粉壳聚糖混合物:淀粉-壳聚糖混合物:关于制备、理化特性和应用的全面综述。
IF 3.2 4区 生物学
Biopolymers Pub Date : 2024-05-30 DOI: 10.1002/bip.23602
Wan Roslina Wan Yusof, Sumiyyah Sabar, Mohd Alhafiizh Zailani
{"title":"Starch-chitosan blends: A comprehensive review on the preparation, physicochemical properties and applications","authors":"Wan Roslina Wan Yusof,&nbsp;Sumiyyah Sabar,&nbsp;Mohd Alhafiizh Zailani","doi":"10.1002/bip.23602","DOIUrl":"10.1002/bip.23602","url":null,"abstract":"<p>Starch and chitosan, polysaccharides derived from natural sources, have significant potential across various domains. Starch is extracted from starch-bearing plants, such as potatoes, whereas chitosan is obtained from the exoskeletons of marine animals, fungi and insects. However, the original forms of starch and chitosan have several limitations, such as low solubility and weak mechanical strength. Interestingly, the combined effects of starch and chitosan resulted in the development of starch-chitosan blends with markedly improved functional properties. These blends demonstrated high tensile strength, improved hydrophilicity and increased adsorption capacity. Furthermore, modification of starch-chitosan blends by techniques such as crosslinking and incorporation of other functional materials contributes to diverse characteristics and functionalities. This review addresses a crucial gap in the literature by providing an overview and up-to-date analysis of starch-chitosan blends. The preparation methods and functional properties of these blends in various forms, such as films, beads and hydrogels, have been extensively discussed. Emphasis is placed on the versatile applications of these blends in research, development and industries such as pharmaceuticals, wastewater treatment, agriculture and food technology. This review aims to provide an insightful overview of starch-chitosan blends and stimulate broader interdisciplinary research interests. By providing concluding insights and prospects, this review highlights the potential for further exploration of the impact of starch-chitosan blends on consumers and the environment.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact and torsional behavior of additive layer-manufactured biopolymer: An advancement for orthopedic applications 添加层制造的生物聚合物的冲击和扭转行为:骨科应用的进步。
IF 3.2 4区 生物学
Biopolymers Pub Date : 2024-05-29 DOI: 10.1002/bip.23600
Shrutika Sharma, Deepa Mudgal, Vishal Gupta
{"title":"Impact and torsional behavior of additive layer-manufactured biopolymer: An advancement for orthopedic applications","authors":"Shrutika Sharma,&nbsp;Deepa Mudgal,&nbsp;Vishal Gupta","doi":"10.1002/bip.23600","DOIUrl":"10.1002/bip.23600","url":null,"abstract":"<p>Distal ulna locking bone plates (DLBPs) are commonly employed in the treatment of distal ulna fractures. However, commercially available metallic bone plates experience stress shielding and lack corrosion resistance. Poly lactic acid (PLA) is highly favored biopolymer due to its biocompatible and bioabsorbable nature with human tissues. The use of additive layer manufacturing (ALM) is gaining attention for creating customized implants with intricate structures tailored to patient autonomy. ALM-based PLA bone plates must provide high resistance against impact and torsional forces, necessitating the adjustment of printing process parameters. This study focuses on examining the influence of key printing parameters, on the impact strength and torque-withstanding capability of DLBPs. Experimental results, along with microscopic images, reveal that an increase in infill density (IF) and wall thickness imparts strong resistance to layers against crack propagation under impact and torsional loads. On the contrary, an increase in layer height and printing speed leads to delamination and early fracture of layers during impact and torsional testing. IF significantly contributes to improving the impact strength and torque-withstanding capability of DLBPs by 70.53% and 80.65%, respectively. The study highlights the potential of the ALM technique in developing DLBPs with sufficient mechanical strength for biomedical applications.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Starch-based films affected by the addition of collagen from Prochilodus magdalenae residues and HPMC: Application in Andean blackberry (Rubus glaucus Benth) coatings 淀粉基薄膜在添加了来自大肠杆菌(Prochilodus magdalenae)残留物的胶原蛋白和 HPMC 后的影响:在安第斯黑莓(Rubus glaucus Benth)涂层中的应用。
IF 3.2 4区 生物学
Biopolymers Pub Date : 2024-05-23 DOI: 10.1002/bip.23601
Vanessa Acevedo-Puello, Paula Gómez-Contreras, Rodrigo Ortega-Toro
{"title":"Starch-based films affected by the addition of collagen from Prochilodus magdalenae residues and HPMC: Application in Andean blackberry (Rubus glaucus Benth) coatings","authors":"Vanessa Acevedo-Puello,&nbsp;Paula Gómez-Contreras,&nbsp;Rodrigo Ortega-Toro","doi":"10.1002/bip.23601","DOIUrl":"10.1002/bip.23601","url":null,"abstract":"<p>Starch-based films offer the advantages of biodegradability, edibility, barrier properties, flexibility, and adaptability. This study compared the physicochemical properties of starch-based films by adding raw fish collagen and hydroxypropylmethylcellulose (HPMC). The tensile properties were evaluated, and the interaction with water was analyzed. Barrier properties, such as water vapor and oxygen permeability, were examined, and optical properties, such as gloss and good internal transmittance, were evaluated. The films were evaluated as coatings on Andean blackberries (<i>Rubus glaucus Benth)</i> for 2 weeks at 85% RH and 25°C. The results showed that the inclusion of collagen caused a reduction in the tensile strength and elastic modulus of the films. Also, the formulation with the highest collagen concentration (F7) exhibited the lowest weight loss and water vapor permeability, also it had the highest collagen concentration and showed the highest reduction in Xw and WAC, with values of 0.048 and 0.65 g water/g dry film, respectively. According to analyzing the optical properties, F1 presented the highest bright-ness and transmittance values, with 18GU and 82 nm values, respectively. In general, the films and coatings are alternatives to traditional packaging materials to prolong the shelf life of these fruits.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of porous poly(L-lactide-co-ε-caprolactone) micropowder for microbubble effect and ultrasound-mediated drug delivery 制备多孔聚(L-乳酸-共ε-己内酯)微粉,用于微泡效应和超声介导的药物输送
IF 3.2 4区 生物学
Biopolymers Pub Date : 2024-05-16 DOI: 10.1002/bip.23587
Jin Ik Lim
{"title":"Fabrication of porous poly(L-lactide-co-ε-caprolactone) micropowder for microbubble effect and ultrasound-mediated drug delivery","authors":"Jin Ik Lim","doi":"10.1002/bip.23587","DOIUrl":"10.1002/bip.23587","url":null,"abstract":"<p>Biodegradable elastic poly(L-lactide-co-ε-caprolactone) (PLCL) copolymer (50:50, lactide:caprolactone molar ratio) was synthesized and porous PLCL micropowders was fabricated by a simple method involving rapid cooling of 0.1, 0.5, and 1% (wt/vol) PLCL/dioxane spray into liquid nitrogen. The physicochemical properties of the porous PLCL micropowders were examined by measuring their pore size, pore morphology, and microbead size using a scanning electron microscopy (SEM) and dye and temozolomide (TMZ)-release testing under ultrasound. Human U-87MG, glioblastoma (GBM) cell culture tests were performed to evaluate cell cytotoxicity by released drug from PLCL micropowders. In this study, the porous PLCL micropowders prepared from 1 wt%/vol% PLCL solutions showed a highly porous structure, satisfactory mechanical properties, and optimal drug release efficiency compared with those produced from 0.1 or 0.5 wt%/vol% solutions. The results of the accumulated release test with the results of the absorbance of the dye initially applied, it was confirmed that more than 80% of the added dye was trapped inside the micropowder, and clearly GBM cytotoxicity effect could be observed by the released TMZ. The drug release system using micropowders and ultrasound can be applied as a drug supply system for various diseases such as brain tumors with low drug permeability.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140943885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信