BiopolymersPub Date : 2024-06-26DOI: 10.1002/bip.23608
Faouzia Khili, Amel Dakhlaoui Omrani
{"title":"Preparation of nanocellulose/reduced graphene oxide matrix loaded with cuprous oxide nanoparticles for efficient catalytic reduction of 4-nitrophenol","authors":"Faouzia Khili, Amel Dakhlaoui Omrani","doi":"10.1002/bip.23608","DOIUrl":"10.1002/bip.23608","url":null,"abstract":"<p>The paper reports on the preparation of cellulose nanocrystals/reduced graphene oxide matrix loaded with cuprous oxide nanoparticles (CNC/rGO-Cu<sub>2</sub>O) through a simple solvothermal method and its application for 4-nitrophenol reduction to 4-aminophenol using sodium borohydride. The CNC/rGO-Cu<sub>2</sub>O nanocomposite was formed chemically by first mixing CNC and graphene oxide (GO) followed by complexation of the negatively charged functional groups of CNC/GO with Cu<sup>2+</sup> ions and subsequent heating at 100°C. This resulted in the simultaneous reduction of GO to rGO and the formation of Cu<sub>2</sub>O nanoparticles. The as-elaborated nanocomposite was firstly characterized using different techniques such as atomic force microscopy, scanning electron microscopy, transmission electron microscopy, UV–Vis spectrophotometry, Raman spectroscopy and x-ray photoelectron spectroscopy. Then, it was successfully applied for efficient catalytic reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride: the reduction was completed in about 6 min. After eight times use, the catalyst still maintained good catalytic performance. Compared to CNC/rGO, rGO/Cu<sub>2</sub>O and free Cu<sub>2</sub>O nanoparticles, the CNC/rGO-Cu<sub>2</sub>O nanocomposite exhibits higher catalytic activity even at lower copper loading.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiopolymersPub Date : 2024-06-20DOI: 10.1002/bip.23609
Nikolitsa Katsenou, Nikolaos Spiliopoulos, Dimitrios L. Anastassopoulos, Aristeidis Papagiannopoulos, Chris Toprakcioglu
{"title":"pH-response of protein-polysaccharide multilayers adsorbed on a flat gold surface: A surface plasmon resonance study","authors":"Nikolitsa Katsenou, Nikolaos Spiliopoulos, Dimitrios L. Anastassopoulos, Aristeidis Papagiannopoulos, Chris Toprakcioglu","doi":"10.1002/bip.23609","DOIUrl":"10.1002/bip.23609","url":null,"abstract":"<p>Polysaccharide-protein multilayers (PPMLs) consisting of bovine serum albumin (BSA) and chondroitin sulfate (CS) are assembled in acidic solution (pH 4.2) via layer-by-layer deposition method. The formation of PPMLs on gold surface and their responsiveness to pH change from 4.2 to 7 is investigated by Surface Plasmon Resonance Spectroscopy. The buildup of the multilayer at pH 4.2 exhibits non-linear growth while the formation of the first layers is strongly affected by the physicochemical properties of the gold surface. Neutral solution (pH 7) affects the interactions between the biopolymers and results in a partially disassemble (disintegration) of the multilayer film. On one hand, the single pair of layers, BSA-CS and the double pair of layers, (BSA-CS)<sub>2</sub>, assemblies are stable in neutral pH, a result that will be of interest for biomedical applications. On the other hand, multilayer films consisting of more than four layers that is (BSA-CS)<sub>2<<i>n</i><5</sub>, disintegrated down to the 4-layered structure by changing pH to neutral, a fact that renders the (BSA-CS)<sub><i>n</i></sub> assembly useful in the field of drug and protein delivery. The residual mass after the disintegration of the assembly never falls below the mass of four layers. The disintegrated multilayer film can be reconstructed and disassembled repeatedly, simply by cycling the pH value.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiopolymersPub Date : 2024-06-18DOI: 10.1002/bip.23606
Nevra Pelin Cesur, Kosar Zad Ghaffari Vahdat, Nelisa Türkoğlu Laçin
{"title":"Fabrication of bacterial cellulose/PVP nanofiber composites by electrospinning","authors":"Nevra Pelin Cesur, Kosar Zad Ghaffari Vahdat, Nelisa Türkoğlu Laçin","doi":"10.1002/bip.23606","DOIUrl":"10.1002/bip.23606","url":null,"abstract":"<p>This study aimed to address a significant challenge in the application of bacterial cellulose (BC) within tissue engineering and regenerative medicine by tackling its inherent insolubility in water and organic solvents. Our team introduced a groundbreaking approach by utilizing zinc sulfate (ZnSO<sub>4</sub>) as a solvent to render BC soluble, a novel contribution to the literature. Subsequently, the obtained soluble BC was combined with varying concentrations of polyvinylpyrrolidone (PVP). Notably, we pioneered the fabrication of BC/PVP composite scaffolds with customizable fiber surface morphology and regulated degradation rates through the electrospun technique. Several key parameters, such as PVP concentration (8%, 15%, 12%, and 20% w/v), applied voltage (22, 15, and 12 kV), and a fixed nozzle-collector distance of 10 cm with a flow rate of 0.9 mL/h, were systematically evaluated so as to find the optimum parameter created BC/PVP product with electrospun. For electrospun BC/PVP products, a voltage of 12 kV was found to be optimal. Intriguingly, our findings revealed enhanced cell adhesion and proliferation in BC/PVP electrospun products compared with using PVP membranes alone. Specifically, cell viability for PVP and PVP/BC electrospun products was determined as 50.73% and 79.95%, respectively. In terms of thermal properties, the BC/PVP electrospun product exhibited a mass loss of 82.6% at 380°C, while PVP alone experienced 90.2% mass loss at around 280°C. Furthermore, the protein adhesion capacities were measured at 62.3 ± 1.2 μg for PVP and 99.4 ± 2 μg for BC/PVP electrospun products, whereas product showed no biodegradation over 28 days and had notable water retention capacity. In conclusion, our research not only successfully attained nanofiber morphology but also showcased enhanced cell attachment and proliferation on the BC/PVP electrospun product.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combination of irradiated chitosan and microbial agent to reduce downy mildew on grapevine cv. Thompson seedless","authors":"Mahadev Khatal, Tanaji Narute, Rakesh Sonawane, Vikas Bhalerao, Sunil Dalvi","doi":"10.1002/bip.23603","DOIUrl":"10.1002/bip.23603","url":null,"abstract":"<p>Globally sustainable disease management ensuring high quality in grapes is in demand as it holds significant importance as a versatile fruit for consumption, winemaking, and production of various products such as grape juice, raisin, and grape-seed oil. The present paper reports a combination of nano-biotechnology as a promising strategy for enhancing plant health and fruit productivity in grapes combining Irradiated chitosan nanoparticles and bio-control agents. The Irradiated Chitosan with <i>Bacillus subtilis</i> and <i>Trichoderma viridae</i> and pesticides were evaluated for disease management. Percent disease index, percent disease control, and percent yield enhancement in Cymoxanil 8% + Mamcozeb 64% WP @ 0.2% treatment were as 17. 24%, 67.97% and 33.91% in 150 ppm Irradiated chitosan+<i>B. subtilis</i> were 19.83, 63.16, 30.41 and in <i>Trichoderma</i> 150 ppm Irradiated chitosan were 24.58, 54.33, and 27.40, respectively as compared to untreated crop with disease severity 53.84% PDI. Thus, irradiated chitosan and <i>Bacillus subtilis</i> elucidated a synergistic combination for residue-free efficient phytosanitary measures, which harnessed the strength of chitosan and bio-control agents for sustainable grape productivity. These findings will also pave the way for a deeper understanding of the synergistic interaction between Irradiated nanochitosan and bio-control agents for an eco-friendly and economically viable disease management strategy. The minimum temperature and morning relative humidity (RH I) had positive significance, with correlation coefficients of 0.484 and 0.485, respectively. The evening relative humidity (RH II) had a positive highly significant positive correlation coefficient of 0.664. Chitosan merits as a multiple stress tolerance enhancing agent that will further help in mitigating climate change adaptations in grapevines reducing reliance on chemical agro-inputs.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiopolymersPub Date : 2024-06-17DOI: 10.1002/bip.23607
Kamila Sadowska, Marta Prześniak-Welenc, Marcin Łapiński
{"title":"Preparation and characterization of bis-phosphonated polycarbohydrates","authors":"Kamila Sadowska, Marta Prześniak-Welenc, Marcin Łapiński","doi":"10.1002/bip.23607","DOIUrl":"10.1002/bip.23607","url":null,"abstract":"<p>A simple, cost-effective, one-pot method was proposed to introduce <i>bis</i>-phosphonic groups onto alginic acid and carboxymethyl cellulose (CMC). New derivatives were characterized by means of nuclear magnetic resonance, X-ray photoelectron, and attenuated total reflectance Fourier transform infrared spectroscopy. These analyses confirmed the successful transformation of carboxylic groups present in alginic acid and CMC into <i>bis</i>-phosphonic groups. Additionally, thermogravimetric analysis coupled with differential scanning calorimetry was employed to investigate the thermal properties of the <i>bis</i>-phosphonic derivatives of alginate and CMC. The results clearly demonstrate the char-forming ability of both studied <i>bis</i>-phosphonated polycarbohydrates, suggesting their potential as intumescent materials.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiopolymersPub Date : 2024-06-12DOI: 10.1002/bip.23605
Wei Wei, Xiaofei Li, Zhiyuan Li
{"title":"Exploration of the sensitization effect of Chaihu Shugan powder on chemotherapy for triple-negative breast cancer and its active ingredients","authors":"Wei Wei, Xiaofei Li, Zhiyuan Li","doi":"10.1002/bip.23605","DOIUrl":"10.1002/bip.23605","url":null,"abstract":"<p>Chemotherapy plays a crucial role in the clinical treatment of triple-negative breast cancer (TNBC), but drug resistance limits its clinical application. The active ingredients of Chaihu Shugan Powder (CSP; Bupleurum Liver-Coursing Powder), quercetin and luteolin, both belong to flavonoid compounds and have significant anti-tumor potential, which can promote chemotherapy sensitivity. However, the correlation between the two and TNBC paclitaxel (PTX) chemotherapy sensitivity is unknown. We collected herbal components of CSP from the TCMSP database, and screened effective molecules and corresponding targets. STRING database was utilized to construct a protein–protein interaction network combining effective molecules and target genes. The top 50 nodes ranked by affinity were chosen for subsequent functional analysis, and the drug-active ingredient-gene interaction network was established using Cytoscape software. Molecular docking was used to determine the small molecules that target TNBC PTX resistance. The “clusterProfiler” package was utilized for GO and KEGG enrichment analyses on the top 50 genes to determine the pathways affected by CSP. Cell counting and colony formation assays evaluated cell viability, IC<sub>50</sub> values, and proliferation capacity. Flow cytometry tested PTX intracellular accumulation. Western blot assayed the expression of TNF pathway-related proteins. Active ingredients of CSP, quercetin and luteolin, could inhibit TNBC cell proliferation and promote PTX chemotherapy sensitization. Quercetin and luteolin repressed the TNF signaling pathway and promoted PTX chemotherapy sensitization. Quercetin and luteolin could inhibit TNBC cell proliferation and promote PTX chemotherapy sensitization through the TNF signaling pathway. Therefore, the use of quercetin and luteolin plus PTX treatment provides a prospective strategy for TNBC treatment.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiopolymersPub Date : 2024-06-07DOI: 10.1002/bip.23585
Josué David Hernández-Varela, José Jorge Chanona-Pérez, Reza Foruzanmehr, Dora Iliana Medina
{"title":"Assessing the reinforcement effect by response surface methodology of holocellulose from spent coffee grounds on biopolymeric films as food packaging materials","authors":"Josué David Hernández-Varela, José Jorge Chanona-Pérez, Reza Foruzanmehr, Dora Iliana Medina","doi":"10.1002/bip.23585","DOIUrl":"10.1002/bip.23585","url":null,"abstract":"<p>The pollution caused by petroleum-derived plastic materials has become a major environmental problem that has encouraged the development of new compostable and environmentally friendly materials for food packaging based on biomodified polymers with household residues. This study aims to design, synthesize, and characterize a biobased polymeric microstructure film from polyvinyl alcohol and chitosan reinforced with holocellulose from spent coffee grounds for food-sustainable packaging. Chemical isolation with a chlorite-based solution was performed to obtain the reinforced holocellulose from the spent coffee ground, and the solvent casting method was used to obtain the films to study. Physicochemical and microscopic characterizations were conducted to identify and select the best formulations using a simplex-centroid design analysis. The response surface methodology results indicate that the new packaging material obtained with equal amounts of polymers and reinforced material (1:1:1) possesses the appropriate barrier properties and microstructural character to prevent water attack and hydrophobic behavior and thus could be used as an alternative for food packaging materials.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiopolymersPub Date : 2024-05-31DOI: 10.1002/bip.23604
Kazuto Yoshiba, Yota Yasuda, Mana Sato, Yasuhiro Matsuda
{"title":"Solvent stabilizing effects on the order–disorder transition of schizophyllan in aqueous mixtures of carboxylic acids","authors":"Kazuto Yoshiba, Yota Yasuda, Mana Sato, Yasuhiro Matsuda","doi":"10.1002/bip.23604","DOIUrl":"10.1002/bip.23604","url":null,"abstract":"<p>Schizophyllan is a triple helical β-1,3-<sub>D</sub>-glucan, and shows the cooperative order–disorder transition in the aqueous solution at the triple helix state. In this paper, the solvent stabilizing effects of two carboxylic acids, acetic acid and citric acid, on the cooperative order–disorder transition of aqueous schizophyllan solution were investigated from DSC and SEC-MALS measurements. The transition temperature (<i>T</i><sub>r</sub>) was shifted to higher temperature with increasing the molar fraction of carboxylic acid in the mixture (<i>x</i>). The transition enthalpy (Δ<i>H</i><sub>r</sub>) was increased with increasing <i>x</i>. These solvent stabilizing effects indicate that these carboxylic acid molecules were selectively associated with the branched side chains of schizophyllan to stabilize the ordered state. The composition dependencies of <i>T</i><sub>r</sub> and Δ<i>H</i><sub>r</sub> were analyzed by the linear cooperative transition theory to estimate the association parameters between the side chains and carboxylic acid. The theoretical parameters obtained were compared with those for the other active substances for the transition to discuss the molecular interactions between the triple helix and carboxylic acid.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiopolymersPub Date : 2024-05-30DOI: 10.1002/bip.23602
Wan Roslina Wan Yusof, Sumiyyah Sabar, Mohd Alhafiizh Zailani
{"title":"Starch-chitosan blends: A comprehensive review on the preparation, physicochemical properties and applications","authors":"Wan Roslina Wan Yusof, Sumiyyah Sabar, Mohd Alhafiizh Zailani","doi":"10.1002/bip.23602","DOIUrl":"10.1002/bip.23602","url":null,"abstract":"<p>Starch and chitosan, polysaccharides derived from natural sources, have significant potential across various domains. Starch is extracted from starch-bearing plants, such as potatoes, whereas chitosan is obtained from the exoskeletons of marine animals, fungi and insects. However, the original forms of starch and chitosan have several limitations, such as low solubility and weak mechanical strength. Interestingly, the combined effects of starch and chitosan resulted in the development of starch-chitosan blends with markedly improved functional properties. These blends demonstrated high tensile strength, improved hydrophilicity and increased adsorption capacity. Furthermore, modification of starch-chitosan blends by techniques such as crosslinking and incorporation of other functional materials contributes to diverse characteristics and functionalities. This review addresses a crucial gap in the literature by providing an overview and up-to-date analysis of starch-chitosan blends. The preparation methods and functional properties of these blends in various forms, such as films, beads and hydrogels, have been extensively discussed. Emphasis is placed on the versatile applications of these blends in research, development and industries such as pharmaceuticals, wastewater treatment, agriculture and food technology. This review aims to provide an insightful overview of starch-chitosan blends and stimulate broader interdisciplinary research interests. By providing concluding insights and prospects, this review highlights the potential for further exploration of the impact of starch-chitosan blends on consumers and the environment.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiopolymersPub Date : 2024-05-29DOI: 10.1002/bip.23600
Shrutika Sharma, Deepa Mudgal, Vishal Gupta
{"title":"Impact and torsional behavior of additive layer-manufactured biopolymer: An advancement for orthopedic applications","authors":"Shrutika Sharma, Deepa Mudgal, Vishal Gupta","doi":"10.1002/bip.23600","DOIUrl":"10.1002/bip.23600","url":null,"abstract":"<p>Distal ulna locking bone plates (DLBPs) are commonly employed in the treatment of distal ulna fractures. However, commercially available metallic bone plates experience stress shielding and lack corrosion resistance. Poly lactic acid (PLA) is highly favored biopolymer due to its biocompatible and bioabsorbable nature with human tissues. The use of additive layer manufacturing (ALM) is gaining attention for creating customized implants with intricate structures tailored to patient autonomy. ALM-based PLA bone plates must provide high resistance against impact and torsional forces, necessitating the adjustment of printing process parameters. This study focuses on examining the influence of key printing parameters, on the impact strength and torque-withstanding capability of DLBPs. Experimental results, along with microscopic images, reveal that an increase in infill density (IF) and wall thickness imparts strong resistance to layers against crack propagation under impact and torsional loads. On the contrary, an increase in layer height and printing speed leads to delamination and early fracture of layers during impact and torsional testing. IF significantly contributes to improving the impact strength and torque-withstanding capability of DLBPs by 70.53% and 80.65%, respectively. The study highlights the potential of the ALM technique in developing DLBPs with sufficient mechanical strength for biomedical applications.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}