Production and Characterization of Plant Extract-Based Cell-Friendly and High Mechanical Strength Nanofiber Wound Dressings by Electrospinning Technique
{"title":"Production and Characterization of Plant Extract-Based Cell-Friendly and High Mechanical Strength Nanofiber Wound Dressings by Electrospinning Technique","authors":"Caglar Sivri, Gulseren Sakarya","doi":"10.1002/bip.70021","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study focused on the development of wound dressings. Plant active ingredients such as clover, chickweed, chamomile, garlic, liverwort, bitter melon, pine resin, marigold (<i>Calendula officinalis</i>), and St. John's Wort (<i>Hypericum perforatum</i> L.) were reinforced with polyethylene oxide (PEO) and polyvinyl alcohol (PVA) polymers, and nanofiber membranes were produced by electrospinning. As a result of the analyses, FTIR confirmed the presence of polymer and active ingredient functional groups in the composite membranes; softening and shifting were observed in the peaks. In the FEGSEM analysis, a thin and regular nanofiber structure was obtained in the S12 membrane in the range of 150–500 nm. In the tensile test, the tensile strength of the S12 sample was measured as 25.89 MPa, and this strength was associated with the homogeneous distribution and thinning of the fibers. In the mesenchymal stem cell analysis, cell viability was determined as 98%, and cell death was determined as 2% for the S12 membrane at the end of 72 h. The results show that the S12 composite membrane can be used as a biomaterial with ideal properties in wound healing applications.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70021","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focused on the development of wound dressings. Plant active ingredients such as clover, chickweed, chamomile, garlic, liverwort, bitter melon, pine resin, marigold (Calendula officinalis), and St. John's Wort (Hypericum perforatum L.) were reinforced with polyethylene oxide (PEO) and polyvinyl alcohol (PVA) polymers, and nanofiber membranes were produced by electrospinning. As a result of the analyses, FTIR confirmed the presence of polymer and active ingredient functional groups in the composite membranes; softening and shifting were observed in the peaks. In the FEGSEM analysis, a thin and regular nanofiber structure was obtained in the S12 membrane in the range of 150–500 nm. In the tensile test, the tensile strength of the S12 sample was measured as 25.89 MPa, and this strength was associated with the homogeneous distribution and thinning of the fibers. In the mesenchymal stem cell analysis, cell viability was determined as 98%, and cell death was determined as 2% for the S12 membrane at the end of 72 h. The results show that the S12 composite membrane can be used as a biomaterial with ideal properties in wound healing applications.
期刊介绍:
Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.