Biomicrofluidics最新文献

筛选
英文 中文
Manipulating the duration of picoinjection controls the injected volume of individual droplets 控制皮米注射的持续时间可控制单个液滴的注射量
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-07-02 DOI: 10.1063/5.0206830
R. Thakur, D. Weitz
{"title":"Manipulating the duration of picoinjection controls the injected volume of individual droplets","authors":"R. Thakur, D. Weitz","doi":"10.1063/5.0206830","DOIUrl":"https://doi.org/10.1063/5.0206830","url":null,"abstract":"The ability to add reagents into droplets is required in many microfluidic workflows. Picoinjection can address this need; however, it is unable to control the injection volume for each individual droplet. Here, we present an improved picoinjection method that can inject controlled volumes into individual droplets. We achieve this by adjusting the injection duration for each picoinjection event. This improved picoinjection method can be used to create complex microfluidic workflows that are able to control the biochemical composition of individual droplets.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141524984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A method to prevent clogging and clustering in microfluidic systems using microbubble streaming 利用微气泡流防止微流体系统堵塞和聚集的方法
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-07-02 DOI: 10.1063/5.0214436
Amirabas Bakhtiari, Christian J. Kähler
{"title":"A method to prevent clogging and clustering in microfluidic systems using microbubble streaming","authors":"Amirabas Bakhtiari, Christian J. Kähler","doi":"10.1063/5.0214436","DOIUrl":"https://doi.org/10.1063/5.0214436","url":null,"abstract":"This paper presents an innovative strategy to address the issues of clogging and cluster-related challenges in microchannels within microfluidic devices. Leveraging three-dimensional (3D) microbubble streaming as a dynamic solution, our approach involves the controlled activation of microbubbles near channel constrictions, inducing microstreaming with distinctive features. This microstreaming, characterized by a high non-uniform 3D gradient and significant shear stress, effectively inhibits arch formation at constrictions and disintegrates particle clusters, demonstrating real-time prevention of clogging incidents and blockages. This study includes experimental validation of the anti-clogging technique, a detailed examination of microstreaming phenomena, and their effects on clogging and clustering issues. It also incorporates statistical analyses performed in various scenarios to verify the method’s effectiveness and adaptability. Moreover, a versatile control system has been designed that operates in event-triggered, continuous, or periodic modes, which suits different lab-on-a-chip applications and improves the overall functionality of microfluidic systems.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141524983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration. 通过粘度梯度诱导迁移实现纳米粒子/小细胞外囊泡分离的新型粘弹性微流体平台。
IF 2.6 4区 工程技术
Biomicrofluidics Pub Date : 2024-06-26 eCollection Date: 2024-05-01 DOI: 10.1063/5.0208417
Han Guo, Dayin Wang, Shilun Feng, Kaihuan Zhang, Yuan Luo, Jianlong Zhao
{"title":"A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration.","authors":"Han Guo, Dayin Wang, Shilun Feng, Kaihuan Zhang, Yuan Luo, Jianlong Zhao","doi":"10.1063/5.0208417","DOIUrl":"10.1063/5.0208417","url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic gut-axis-on-a-chip models for pharmacokinetic-based disease models. 基于药物动力学的疾病模型的微流控芯片肠道轴模型。
IF 2.6 4区 工程技术
Biomicrofluidics Pub Date : 2024-06-26 eCollection Date: 2024-05-01 DOI: 10.1063/5.0206271
Raehyun Kim, Jong Hwan Sung
{"title":"Microfluidic gut-axis-on-a-chip models for pharmacokinetic-based disease models.","authors":"Raehyun Kim, Jong Hwan Sung","doi":"10.1063/5.0206271","DOIUrl":"10.1063/5.0206271","url":null,"abstract":"<p><p>The low success rate of new drugs transitioning from animal testing to human clinical trials necessitates the development of more accurate and representative <i>in vitro</i> models. Recent advances in multi-organ-on-a-chip technology offer promising avenues for studying complex organ-organ interactions. Gut-liver-on-a-chip systems hold particular promise for mimicking the intricate interplay between the gut and liver, which play crucial roles in nutrient absorption, drug metabolism, detoxification, and immune response. Here, we discuss the key components of the gut-liver axis, including the gut epithelium, liver cells, gut microbiota, and their roles in the organ functions. We then explore the potential of gut-liver-on-a-chip models to replicate the intricate interactions between the two organs for pharmacokinetic studies and their expansion to more complicated multi-organ models. Finally, we provide perspectives and future directions for developing more physiologically relevant gut-liver-axis models for more efficient drug development, studying liver diseases, and personalizing treatment strategies.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application and prospect of microfluidic devices for rapid assay of cell activities in the tumor microenvironment. 微流控装置在快速检测肿瘤微环境中细胞活性方面的应用和前景。
IF 2.6 4区 工程技术
Biomicrofluidics Pub Date : 2024-06-17 eCollection Date: 2024-05-01 DOI: 10.1063/5.0206058
Linjing Zhu, Xueling Cui, Lingling Jiang, Fang Fang, Boyang Liu
{"title":"Application and prospect of microfluidic devices for rapid assay of cell activities in the tumor microenvironment.","authors":"Linjing Zhu, Xueling Cui, Lingling Jiang, Fang Fang, Boyang Liu","doi":"10.1063/5.0206058","DOIUrl":"10.1063/5.0206058","url":null,"abstract":"<p><p>The global impact of cancer on human health has raised significant concern. In this context, the tumor microenvironment (TME) plays a pivotal role in the tumorigenesis and malignant progression. In order to enhance the accuracy and efficacy of therapeutic outcomes, there is an imminent requirement for <i>in vitro</i> models that can accurately replicate the intricate characteristics and constituents of TME. Microfluidic devices exhibit notable advantages in investigating the progression and treatment of tumors and have the potential to become a novel methodology for evaluating immune cell activities in TME and assist clinicians in assessing the prognosis of patients. In addition, it shows great advantages compared to traditional cell experiments. Therefore, the review first outlines the applications and advantages of microfluidic chips in facilitating tumor cell culture, constructing TME and investigating immune cell activities. Second, the roles of microfluidic devices in the analysis of circulating tumor cells, tumor prognosis, and drug screening have also been mentioned. Moreover, a forward-looking perspective is discussed, anticipating the widespread clinical adoption of microfluidic devices in the future.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185871/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic technologies for advanced antimicrobial susceptibility testing. 用于高级抗菌药物药敏试验的微流控技术。
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-06-07 eCollection Date: 2024-05-01 DOI: 10.1063/5.0190112
Wenshuai Wu, Ying Mu
{"title":"Microfluidic technologies for advanced antimicrobial susceptibility testing.","authors":"Wenshuai Wu, Ying Mu","doi":"10.1063/5.0190112","DOIUrl":"10.1063/5.0190112","url":null,"abstract":"<p><p>Antimicrobial resistance is getting serious and becoming a threat to public health worldwide. The improper and excessive use of antibiotics is responsible for this situation. The standard methods used in clinical laboratories, to diagnose bacterial infections, identify pathogens, and determine susceptibility profiles, are time-consuming and labor-intensive, leaving the empirical antimicrobial therapy as the only option for the first treatment. To prevent the situation from getting worse, evidence-based therapy should be given. The choosing of effective drugs requires powerful diagnostic tools to provide comprehensive information on infections. Recent progress in microfluidics is pushing infection diagnosis and antimicrobial susceptibility testing (AST) to be faster and easier. This review summarizes the recent development in microfluidic assays for rapid identification and AST in bacterial infections. Finally, we discuss the perspective of microfluidic-AST to develop the next-generation infection diagnosis technologies.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162290/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in microfluidic-based spectroscopic approaches for pathogen detection. 基于微流体的病原体检测光谱方法的最新进展。
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-06-07 eCollection Date: 2024-05-01 DOI: 10.1063/5.0204987
Mubashir Hussain, Xu He, Chao Wang, Yichuan Wang, Jingjing Wang, Mingyue Chen, Haiquan Kang, Na Yang, Xinye Ni, Jianqing Li, Xiuping Zhou, Bin Liu
{"title":"Recent advances in microfluidic-based spectroscopic approaches for pathogen detection.","authors":"Mubashir Hussain, Xu He, Chao Wang, Yichuan Wang, Jingjing Wang, Mingyue Chen, Haiquan Kang, Na Yang, Xinye Ni, Jianqing Li, Xiuping Zhou, Bin Liu","doi":"10.1063/5.0204987","DOIUrl":"10.1063/5.0204987","url":null,"abstract":"<p><p>Rapid identification of pathogens with higher sensitivity and specificity plays a significant role in maintaining public health, environmental monitoring, controlling food quality, and clinical diagnostics. Different methods have been widely used in food testing laboratories, quality control departments in food companies, hospitals, and clinical settings to identify pathogens. Some limitations in current pathogens detection methods are time-consuming, expensive, and laborious sample preparation, making it unsuitable for rapid detection. Microfluidics has emerged as a promising technology for biosensing applications due to its ability to precisely manipulate small volumes of fluids. Microfluidics platforms combined with spectroscopic techniques are capable of developing miniaturized devices that can detect and quantify pathogenic samples. The review focuses on the advancements in microfluidic devices integrated with spectroscopic methods for detecting bacterial microbes over the past five years. The review is based on several spectroscopic techniques, including fluorescence detection, surface-enhanced Raman scattering, and dynamic light scattering methods coupled with microfluidic platforms. The key detection principles of different approaches were discussed and summarized. Finally, the future possible directions and challenges in microfluidic-based spectroscopy for isolating and detecting pathogens using the latest innovations were also discussed.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic sweat patch based on capillary force and evaporation pump for real-time continuous sweat analysis 基于毛细管力和蒸发泵的微流控汗液贴片,用于实时连续汗液分析
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-05-31 DOI: 10.1063/5.0208075
Xiujun Fu, Ye Qiu, Hengjie Zhang, Ye Tian, Aiping Liu, Huaping Wu
{"title":"Microfluidic sweat patch based on capillary force and evaporation pump for real-time continuous sweat analysis","authors":"Xiujun Fu, Ye Qiu, Hengjie Zhang, Ye Tian, Aiping Liu, Huaping Wu","doi":"10.1063/5.0208075","DOIUrl":"https://doi.org/10.1063/5.0208075","url":null,"abstract":"In addition to the common blood and urine, fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body’s state. Wearable sweat sensors are crucial for understanding human physiological health; however, real-time in situ measurement of multiple biomarkers in sweat remains a significant challenge. Here, we propose a wearable microfluidic patch featuring an integrated microfluidic channel and evaporation pump for accelerated and continuous sweat collection, eliminating the need for additional sweat storage cavities that typically impede real-time detection. Capillary forces are harnessed to facilitate the rapid flow of sweat through the detection area, while an evaporation pump based on porous laser-induced graphene enhances sweat evaporation. The synergistic integration of these two components enables an uninterrupted flow of fresh sweat within the patch, ensuring real-time monitoring. The influence of channel size parameters on sweat flow velocity is analyzed, and the optimal width-to-height ratio for achieving the desired flow velocity is determined. By implementing a multi-channel parallel design with chamfering, liquid flow resistance is effectively reduced. Furthermore, the patch integrates sensor modules for sodium ion, chloride ion, glucose, and pH value measurements, ensuring excellent sealing and stability of the assembled system. This work presents a simplified approach to developing wearable sweat sensors that hold the potential for health monitoring and disease diagnosis.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatic spheroid-on-a-chip: Fabrication and characterization of a spheroid-based in vitro model of the human liver for drug screening applications 肝脏球形芯片:为药物筛选应用制作和表征基于球形的人体肝脏体外模型
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-05-28 DOI: 10.1063/5.0210955
Sultan K. AlShmmari, Roa S. Fardous, Zakia Shinwari, Dana Cialla-May, Jürgen Popp, Qasem Ramadan, Mohammed Zourob
{"title":"Hepatic spheroid-on-a-chip: Fabrication and characterization of a spheroid-based in vitro model of the human liver for drug screening applications","authors":"Sultan K. AlShmmari, Roa S. Fardous, Zakia Shinwari, Dana Cialla-May, Jürgen Popp, Qasem Ramadan, Mohammed Zourob","doi":"10.1063/5.0210955","DOIUrl":"https://doi.org/10.1063/5.0210955","url":null,"abstract":"The integration of microfabrication and microfluidics techniques into cell culture technology has significantly transformed cell culture conditions, scaffold architecture, and tissue biofabrication. These tools offer precise control over cell positioning and enable high-resolution analysis and testing. Culturing cells in 3D systems, such as spheroids and organoids, enables recapitulating the interaction between cells and the extracellular matrix, thereby allowing the creation of human-based biomimetic tissue models that are well-suited for pre-clinical drug screening. Here, we demonstrate an innovative microfluidic device for the formation, culture, and testing of hepatocyte spheroids, which comprises a large array of patterned microwells for hosting hepatic spheroid culture in a reproducible and organized format in a dynamic fluidic environment. The device allows maintaining and characterizing different spheroid sizes as well as exposing to various drugs in parallel enabling high-throughput experimentation. These liver spheroids exhibit physiologically relevant hepatic functionality, as evidenced by their ability to produce albumin and urea at levels comparable to in vivo conditions and the capability to distinguish the toxic effects of selected drugs. This highlights the effectiveness of the microenvironment provided by the chip in maintaining the functionality of hepatocyte spheroids. These data support the notion that the liver-spheroid chip provides a favorable microenvironment for the maintenance of hepatocyte spheroid functionality.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulation of magnetic beads for actively capturing Vibrio parahaemolyticus and nucleic acid based on microfluidic system. 基于微流体系统的磁珠主动捕获副溶血性弧菌和核酸的操作。
IF 3.2 4区 工程技术
Biomicrofluidics Pub Date : 2024-05-10 eCollection Date: 2024-05-01 DOI: 10.1063/5.0193442
Zhaoxuan Zhang, Xue Deng, Wenqiang Zhang, Kehan Chen, Yuan Su, Chao Gao, De Gong, Longjiao Zhu, Jun Cai
{"title":"Manipulation of magnetic beads for actively capturing <i>Vibrio parahaemolyticus</i> and nucleic acid based on microfluidic system.","authors":"Zhaoxuan Zhang, Xue Deng, Wenqiang Zhang, Kehan Chen, Yuan Su, Chao Gao, De Gong, Longjiao Zhu, Jun Cai","doi":"10.1063/5.0193442","DOIUrl":"10.1063/5.0193442","url":null,"abstract":"<p><p>Rapid biological detection of pathogen micro-organisms has attracted much attention for practical biomedical applications. Despite the development in this field, it is still challenging to achieve simple and rapid biological detection using the microfluidic method. Herein, we propose a novel strategy of biological detection that combines precise detection control of the capillary microfluidic chip and versatile manipulation of magnetic beads. The microfluidic chip was fabricated via laser cutting, which utilized capillary pressure to realize rapid passive injection of liquid samples. Under an external magnetic field, the aptamer-modified magnetic beads were actuated to mix with <i>Vibrio parahaemolyticus</i> (<i>V. parahaemolyticus</i>) and its nucleic acid in the capillary microfluidic chip for rapid selective capture and detection, which could be achieved within 40 min. The experimental results demonstrated that <i>V. parahaemolyticus</i> could be captured using on-chip immunomagnetic beads with a high efficiency and significantly enhanced detection value. Due to these superior performances, the capillary microfluidic system, based on the manipulation of magnetic beads, demonstrated great potential for automatic biological detection.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11088461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信