Yangyang Tang, Xiaolei Cao, Rui Kong, Xianyong Li, Jiankun Wang, Jin Wu, Xiaoling Wang
{"title":"Trajectory analysis of <i>Bacillus subtilis</i> in micro-droplets.","authors":"Yangyang Tang, Xiaolei Cao, Rui Kong, Xianyong Li, Jiankun Wang, Jin Wu, Xiaoling Wang","doi":"10.1063/5.0211134","DOIUrl":null,"url":null,"abstract":"<p><p>In order to study <i>Bacillus subtilis</i> biofilm formation in microdroplets, we use microfluidics technology to make the droplets and confocal microscopy to capture bacterial movement and biofilm formation in the droplets. We develop a multi-target tracking methodology, using a YOLOv5 detector to identify cells and a DeepSORT algorithm to track cell movements. We find that <i>Bacillus subtilis</i> bacteria with autonomous migration and biofilm-forming ability prefer to cluster and swarm near the microdroplet surface, rather than in the droplet interior. Bacterial mobility depends on phenotype and spatial location within the droplet. The motile cells move about 3.5 times faster than the matrix-producing cells. When the cells are near the wall of the droplet, the direction of the motion of motile cells is along that wall. When the cells are inside the droplet, the direction of the motion of motile cells is disordered, i.e., there is no clear directional or goal-oriented movement. This contrast increases the cell contact probability and facilitates the formation of a <i>Bacillus subtilis</i> biofilm in the droplet. Furthermore, we develop a mathematical model to describe the motion behavior of <i>Bacillus subtilis</i> in microdroplets, which is useful for exploring the influence of motility on biofilm formation.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0211134","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to study Bacillus subtilis biofilm formation in microdroplets, we use microfluidics technology to make the droplets and confocal microscopy to capture bacterial movement and biofilm formation in the droplets. We develop a multi-target tracking methodology, using a YOLOv5 detector to identify cells and a DeepSORT algorithm to track cell movements. We find that Bacillus subtilis bacteria with autonomous migration and biofilm-forming ability prefer to cluster and swarm near the microdroplet surface, rather than in the droplet interior. Bacterial mobility depends on phenotype and spatial location within the droplet. The motile cells move about 3.5 times faster than the matrix-producing cells. When the cells are near the wall of the droplet, the direction of the motion of motile cells is along that wall. When the cells are inside the droplet, the direction of the motion of motile cells is disordered, i.e., there is no clear directional or goal-oriented movement. This contrast increases the cell contact probability and facilitates the formation of a Bacillus subtilis biofilm in the droplet. Furthermore, we develop a mathematical model to describe the motion behavior of Bacillus subtilis in microdroplets, which is useful for exploring the influence of motility on biofilm formation.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...