设计液滴微流控芯片的简单指南,利用分层流动辅助粒子排序法提高单个(生物)粒子的封装率。

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS
Biomicrofluidics Pub Date : 2024-10-09 eCollection Date: 2024-09-01 DOI:10.1063/5.0219528
Thu H Nguyen, Noura Ezzo, Sarah Chan, Evelyn K F Yim, Carolyn L Ren
{"title":"设计液滴微流控芯片的简单指南,利用分层流动辅助粒子排序法提高单个(生物)粒子的封装率。","authors":"Thu H Nguyen, Noura Ezzo, Sarah Chan, Evelyn K F Yim, Carolyn L Ren","doi":"10.1063/5.0219528","DOIUrl":null,"url":null,"abstract":"<p><p>Encapsulation of a single (bio)particle into individual droplets (referred to as single encapsulation) presents tremendous potential for precise biological and chemical reactions at the single (bio)particle level. Previously demonstrated successful strategies often rely on the use of high flow rates, gel, or viscoelastic materials for initial cell ordering prior to encapsulation into droplets, which could potentially challenge the system's operation. We propose to enhance the single encapsulation rate by using a stratified flow structure to focus and pre-order the (bio)particles before encapsulation. The stratified flow structure is formed using two simple aqueous Newtonian fluids with a viscosity contrast, which together serve as the dispersed phase. The single encapsulation rate is influenced by many parameters, including fluid viscosity contrast, geometric conditions, flow conditions and flow rate ratios, and dimensionless numbers such as the capillary number. This study focuses on investigating the influences of these parameters on the focused stream of the stratified flow, which is key for single encapsulation. The results allow the proposal of a simple guideline that can be adopted to design droplet microfluidic chips with an improved single encapsulation rate demanded by a wide range of applications. The guideline was validated by performing the single encapsulation of mouse embryonic stem cells suspended in a gelatin-methacryloyl solution in individual droplets of phosphate buffer saline, achieving a single encapsulation efficiency of up to 70%.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466506/pdf/","citationCount":"0","resultStr":"{\"title\":\"A simple guideline for designing droplet microfluidic chips to achieve an improved single (bio)particle encapsulation rate using a stratified flow-assisted particle ordering method.\",\"authors\":\"Thu H Nguyen, Noura Ezzo, Sarah Chan, Evelyn K F Yim, Carolyn L Ren\",\"doi\":\"10.1063/5.0219528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Encapsulation of a single (bio)particle into individual droplets (referred to as single encapsulation) presents tremendous potential for precise biological and chemical reactions at the single (bio)particle level. Previously demonstrated successful strategies often rely on the use of high flow rates, gel, or viscoelastic materials for initial cell ordering prior to encapsulation into droplets, which could potentially challenge the system's operation. We propose to enhance the single encapsulation rate by using a stratified flow structure to focus and pre-order the (bio)particles before encapsulation. The stratified flow structure is formed using two simple aqueous Newtonian fluids with a viscosity contrast, which together serve as the dispersed phase. The single encapsulation rate is influenced by many parameters, including fluid viscosity contrast, geometric conditions, flow conditions and flow rate ratios, and dimensionless numbers such as the capillary number. This study focuses on investigating the influences of these parameters on the focused stream of the stratified flow, which is key for single encapsulation. The results allow the proposal of a simple guideline that can be adopted to design droplet microfluidic chips with an improved single encapsulation rate demanded by a wide range of applications. The guideline was validated by performing the single encapsulation of mouse embryonic stem cells suspended in a gelatin-methacryloyl solution in individual droplets of phosphate buffer saline, achieving a single encapsulation efficiency of up to 70%.</p>\",\"PeriodicalId\":8855,\"journal\":{\"name\":\"Biomicrofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomicrofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219528\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219528","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

将单个(生物)颗粒封装到单个液滴中(称为单个封装)为在单个(生物)颗粒水平上进行精确的生物和化学反应带来了巨大的潜力。以前证明的成功策略通常依赖于使用高流速、凝胶或粘弹性材料进行初始细胞有序化,然后再封装成液滴,这可能会对系统的运行造成潜在挑战。我们建议在封装前使用分层流动结构对(生物)颗粒进行聚焦和预排序,从而提高单次封装率。分层流动结构由两种具有粘度对比的简单牛顿水性流体形成,共同作为分散相。单一封装率受许多参数的影响,包括流体粘度对比、几何条件、流动条件和流速比以及毛细管数等无量纲数。本研究的重点是调查这些参数对分层流的聚焦流的影响,这对单次封装至关重要。研究结果提出了一个简单的指导原则,可用于设计液滴微流控芯片,提高单次封装率,满足广泛的应用需求。通过将悬浮在明胶-甲基丙烯酰溶液中的小鼠胚胎干细胞单个封装在磷酸盐缓冲盐溶液的液滴中,验证了该指南的有效性,单个封装效率高达 70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple guideline for designing droplet microfluidic chips to achieve an improved single (bio)particle encapsulation rate using a stratified flow-assisted particle ordering method.

Encapsulation of a single (bio)particle into individual droplets (referred to as single encapsulation) presents tremendous potential for precise biological and chemical reactions at the single (bio)particle level. Previously demonstrated successful strategies often rely on the use of high flow rates, gel, or viscoelastic materials for initial cell ordering prior to encapsulation into droplets, which could potentially challenge the system's operation. We propose to enhance the single encapsulation rate by using a stratified flow structure to focus and pre-order the (bio)particles before encapsulation. The stratified flow structure is formed using two simple aqueous Newtonian fluids with a viscosity contrast, which together serve as the dispersed phase. The single encapsulation rate is influenced by many parameters, including fluid viscosity contrast, geometric conditions, flow conditions and flow rate ratios, and dimensionless numbers such as the capillary number. This study focuses on investigating the influences of these parameters on the focused stream of the stratified flow, which is key for single encapsulation. The results allow the proposal of a simple guideline that can be adopted to design droplet microfluidic chips with an improved single encapsulation rate demanded by a wide range of applications. The guideline was validated by performing the single encapsulation of mouse embryonic stem cells suspended in a gelatin-methacryloyl solution in individual droplets of phosphate buffer saline, achieving a single encapsulation efficiency of up to 70%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信