Thu H Nguyen, Noura Ezzo, Sarah Chan, Evelyn K F Yim, Carolyn L Ren
{"title":"设计液滴微流控芯片的简单指南,利用分层流动辅助粒子排序法提高单个(生物)粒子的封装率。","authors":"Thu H Nguyen, Noura Ezzo, Sarah Chan, Evelyn K F Yim, Carolyn L Ren","doi":"10.1063/5.0219528","DOIUrl":null,"url":null,"abstract":"<p><p>Encapsulation of a single (bio)particle into individual droplets (referred to as single encapsulation) presents tremendous potential for precise biological and chemical reactions at the single (bio)particle level. Previously demonstrated successful strategies often rely on the use of high flow rates, gel, or viscoelastic materials for initial cell ordering prior to encapsulation into droplets, which could potentially challenge the system's operation. We propose to enhance the single encapsulation rate by using a stratified flow structure to focus and pre-order the (bio)particles before encapsulation. The stratified flow structure is formed using two simple aqueous Newtonian fluids with a viscosity contrast, which together serve as the dispersed phase. The single encapsulation rate is influenced by many parameters, including fluid viscosity contrast, geometric conditions, flow conditions and flow rate ratios, and dimensionless numbers such as the capillary number. This study focuses on investigating the influences of these parameters on the focused stream of the stratified flow, which is key for single encapsulation. The results allow the proposal of a simple guideline that can be adopted to design droplet microfluidic chips with an improved single encapsulation rate demanded by a wide range of applications. The guideline was validated by performing the single encapsulation of mouse embryonic stem cells suspended in a gelatin-methacryloyl solution in individual droplets of phosphate buffer saline, achieving a single encapsulation efficiency of up to 70%.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466506/pdf/","citationCount":"0","resultStr":"{\"title\":\"A simple guideline for designing droplet microfluidic chips to achieve an improved single (bio)particle encapsulation rate using a stratified flow-assisted particle ordering method.\",\"authors\":\"Thu H Nguyen, Noura Ezzo, Sarah Chan, Evelyn K F Yim, Carolyn L Ren\",\"doi\":\"10.1063/5.0219528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Encapsulation of a single (bio)particle into individual droplets (referred to as single encapsulation) presents tremendous potential for precise biological and chemical reactions at the single (bio)particle level. Previously demonstrated successful strategies often rely on the use of high flow rates, gel, or viscoelastic materials for initial cell ordering prior to encapsulation into droplets, which could potentially challenge the system's operation. We propose to enhance the single encapsulation rate by using a stratified flow structure to focus and pre-order the (bio)particles before encapsulation. The stratified flow structure is formed using two simple aqueous Newtonian fluids with a viscosity contrast, which together serve as the dispersed phase. The single encapsulation rate is influenced by many parameters, including fluid viscosity contrast, geometric conditions, flow conditions and flow rate ratios, and dimensionless numbers such as the capillary number. This study focuses on investigating the influences of these parameters on the focused stream of the stratified flow, which is key for single encapsulation. The results allow the proposal of a simple guideline that can be adopted to design droplet microfluidic chips with an improved single encapsulation rate demanded by a wide range of applications. The guideline was validated by performing the single encapsulation of mouse embryonic stem cells suspended in a gelatin-methacryloyl solution in individual droplets of phosphate buffer saline, achieving a single encapsulation efficiency of up to 70%.</p>\",\"PeriodicalId\":8855,\"journal\":{\"name\":\"Biomicrofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomicrofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219528\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219528","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A simple guideline for designing droplet microfluidic chips to achieve an improved single (bio)particle encapsulation rate using a stratified flow-assisted particle ordering method.
Encapsulation of a single (bio)particle into individual droplets (referred to as single encapsulation) presents tremendous potential for precise biological and chemical reactions at the single (bio)particle level. Previously demonstrated successful strategies often rely on the use of high flow rates, gel, or viscoelastic materials for initial cell ordering prior to encapsulation into droplets, which could potentially challenge the system's operation. We propose to enhance the single encapsulation rate by using a stratified flow structure to focus and pre-order the (bio)particles before encapsulation. The stratified flow structure is formed using two simple aqueous Newtonian fluids with a viscosity contrast, which together serve as the dispersed phase. The single encapsulation rate is influenced by many parameters, including fluid viscosity contrast, geometric conditions, flow conditions and flow rate ratios, and dimensionless numbers such as the capillary number. This study focuses on investigating the influences of these parameters on the focused stream of the stratified flow, which is key for single encapsulation. The results allow the proposal of a simple guideline that can be adopted to design droplet microfluidic chips with an improved single encapsulation rate demanded by a wide range of applications. The guideline was validated by performing the single encapsulation of mouse embryonic stem cells suspended in a gelatin-methacryloyl solution in individual droplets of phosphate buffer saline, achieving a single encapsulation efficiency of up to 70%.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...