微滴中枯草芽孢杆菌的轨迹分析。

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS
Biomicrofluidics Pub Date : 2024-10-09 eCollection Date: 2024-09-01 DOI:10.1063/5.0211134
Yangyang Tang, Xiaolei Cao, Rui Kong, Xianyong Li, Jiankun Wang, Jin Wu, Xiaoling Wang
{"title":"微滴中枯草芽孢杆菌的轨迹分析。","authors":"Yangyang Tang, Xiaolei Cao, Rui Kong, Xianyong Li, Jiankun Wang, Jin Wu, Xiaoling Wang","doi":"10.1063/5.0211134","DOIUrl":null,"url":null,"abstract":"<p><p>In order to study <i>Bacillus subtilis</i> biofilm formation in microdroplets, we use microfluidics technology to make the droplets and confocal microscopy to capture bacterial movement and biofilm formation in the droplets. We develop a multi-target tracking methodology, using a YOLOv5 detector to identify cells and a DeepSORT algorithm to track cell movements. We find that <i>Bacillus subtilis</i> bacteria with autonomous migration and biofilm-forming ability prefer to cluster and swarm near the microdroplet surface, rather than in the droplet interior. Bacterial mobility depends on phenotype and spatial location within the droplet. The motile cells move about 3.5 times faster than the matrix-producing cells. When the cells are near the wall of the droplet, the direction of the motion of motile cells is along that wall. When the cells are inside the droplet, the direction of the motion of motile cells is disordered, i.e., there is no clear directional or goal-oriented movement. This contrast increases the cell contact probability and facilitates the formation of a <i>Bacillus subtilis</i> biofilm in the droplet. Furthermore, we develop a mathematical model to describe the motion behavior of <i>Bacillus subtilis</i> in microdroplets, which is useful for exploring the influence of motility on biofilm formation.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trajectory analysis of <i>Bacillus subtilis</i> in micro-droplets.\",\"authors\":\"Yangyang Tang, Xiaolei Cao, Rui Kong, Xianyong Li, Jiankun Wang, Jin Wu, Xiaoling Wang\",\"doi\":\"10.1063/5.0211134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to study <i>Bacillus subtilis</i> biofilm formation in microdroplets, we use microfluidics technology to make the droplets and confocal microscopy to capture bacterial movement and biofilm formation in the droplets. We develop a multi-target tracking methodology, using a YOLOv5 detector to identify cells and a DeepSORT algorithm to track cell movements. We find that <i>Bacillus subtilis</i> bacteria with autonomous migration and biofilm-forming ability prefer to cluster and swarm near the microdroplet surface, rather than in the droplet interior. Bacterial mobility depends on phenotype and spatial location within the droplet. The motile cells move about 3.5 times faster than the matrix-producing cells. When the cells are near the wall of the droplet, the direction of the motion of motile cells is along that wall. When the cells are inside the droplet, the direction of the motion of motile cells is disordered, i.e., there is no clear directional or goal-oriented movement. This contrast increases the cell contact probability and facilitates the formation of a <i>Bacillus subtilis</i> biofilm in the droplet. Furthermore, we develop a mathematical model to describe the motion behavior of <i>Bacillus subtilis</i> in microdroplets, which is useful for exploring the influence of motility on biofilm formation.</p>\",\"PeriodicalId\":8855,\"journal\":{\"name\":\"Biomicrofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomicrofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0211134\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0211134","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

为了研究枯草杆菌在微液滴中的生物膜形成,我们使用微流控技术制造微液滴,并使用共聚焦显微镜捕捉微液滴中的细菌运动和生物膜形成。我们开发了一种多目标跟踪方法,使用 YOLOv5 检测器识别细胞,并使用 DeepSORT 算法跟踪细胞运动。我们发现,具有自主迁移和生物膜形成能力的枯草芽孢杆菌更喜欢在微液滴表面附近聚集成群,而不是在液滴内部。细菌的移动能力取决于表型和在液滴中的空间位置。运动细胞的移动速度是基质生成细胞的 3.5 倍。当细胞靠近液滴壁时,运动细胞沿着液滴壁运动。当细胞位于液滴内部时,运动细胞的运动方向是无序的,即没有明确的运动方向或目标。这种反差增加了细胞接触概率,有利于液滴中枯草芽孢杆菌生物膜的形成。此外,我们还建立了一个数学模型来描述枯草芽孢杆菌在微液滴中的运动行为,该模型有助于探索运动对生物膜形成的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory analysis of Bacillus subtilis in micro-droplets.

In order to study Bacillus subtilis biofilm formation in microdroplets, we use microfluidics technology to make the droplets and confocal microscopy to capture bacterial movement and biofilm formation in the droplets. We develop a multi-target tracking methodology, using a YOLOv5 detector to identify cells and a DeepSORT algorithm to track cell movements. We find that Bacillus subtilis bacteria with autonomous migration and biofilm-forming ability prefer to cluster and swarm near the microdroplet surface, rather than in the droplet interior. Bacterial mobility depends on phenotype and spatial location within the droplet. The motile cells move about 3.5 times faster than the matrix-producing cells. When the cells are near the wall of the droplet, the direction of the motion of motile cells is along that wall. When the cells are inside the droplet, the direction of the motion of motile cells is disordered, i.e., there is no clear directional or goal-oriented movement. This contrast increases the cell contact probability and facilitates the formation of a Bacillus subtilis biofilm in the droplet. Furthermore, we develop a mathematical model to describe the motion behavior of Bacillus subtilis in microdroplets, which is useful for exploring the influence of motility on biofilm formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信