Rebeca Martínez-Lazaro, Andrea Reyes-Carrión, David Bartolomé-Martín, Teresa Giraldez
{"title":"The NMDAR-BK channelosomes as regulators of synaptic plasticity.","authors":"Rebeca Martínez-Lazaro, Andrea Reyes-Carrión, David Bartolomé-Martín, Teresa Giraldez","doi":"10.1042/BST20240425","DOIUrl":"10.1042/BST20240425","url":null,"abstract":"<p><p>Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons. Since then, additional evidence has confirmed this functional coupling in other brain regions and highlighted its significance in neuronal function and pathophysiology. In this review, we explore the current understanding of these macrocomplexes in the brain, the molecular mechanisms behind their interactions and their potential roles in neurodevelopmental disorders, paving the way for new treatment strategies.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":"53 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajendra K Angara, Peyton E Van Winkle, Stacey D Gilk
{"title":"Mechanisms of lipid homeostasis in the Coxiella Containing Vacuole.","authors":"Rajendra K Angara, Peyton E Van Winkle, Stacey D Gilk","doi":"10.1042/BST20240899","DOIUrl":"10.1042/BST20240899","url":null,"abstract":"<p><p>Coxiella burnetii, the causative agent of human Q fever, is an obligate intracellular bacterial pathogen that replicates in a large, membrane-bound vacuole known as the Coxiella Containing Vacuole (CCV). The CCV is a unique, phagolysosome-derived vacuole with a sterol-rich membrane containing host and bacterial proteins. The CCV membrane itself serves as a barrier to protect the bacteria from the host's innate immune response, and the lipid and protein content directly influence both the CCV luminal environment and interactions between the CCV and host trafficking pathways. CCV membrane cholesterol is critical in regulating CCV pH, while CCV phosphatidylinositol phosphate species influence CCV fusion events and membrane dynamics. C. burnetii proteins directly target host lipid metabolism to regulate CCV membrane content and generate a source of lipids that support bacterial replication or influence the innate immune response. This review provides an overview of the diverse repertoire of lipids involved in CCV formation and maintenance, highlighting the pathogen-driven strategies to modify host lipid homeostasis.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":"0 0","pages":"59–68"},"PeriodicalIF":3.8,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Greasing the wheels of inflammasome formation: regulation of NLRP3 function by S-linked fatty acids.","authors":"Daniel M Williams, Andrew A Peden","doi":"10.1042/BST20241738","DOIUrl":"https://doi.org/10.1042/BST20241738","url":null,"abstract":"<p><p>NLRP3 is an inflammasome seeding pattern recognition receptor that initiates a pro-inflammatory signalling cascade in response to changes in intracellular homeostasis that are indicative of bacterial infection or tissue damage. Several types of post-translational modification (PTM) have been identified that are added to NLRP3 to regulate its activity. Recent progress has revealed that NLRP3 is subject to a further type of PTM, S-acylation (or palmitoylation), which involves the reversible addition of long-chain fatty acids to target cysteine residues by opposing sets of enzymes. This review provides an overview of recent studies that have identified S-acylation as an important modifier of NLRP3 function. The essential role of S-acylation in the recruitment of NLRP3 to intracellular membranes and the consequences of S-acylation-dependent membrane recruitment on NLRP3 localisation and activation are discussed in detail.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constructing mechanosensitive signalling pathways de novo in synthetic cells.","authors":"James W Hindley","doi":"10.1042/BST20231285","DOIUrl":"https://doi.org/10.1042/BST20231285","url":null,"abstract":"<p><p>Biological mechanotransduction enables cells to sense and respond to mechanical forces in their local environment through changes in cell structure and gene expression, resulting in downstream changes in cell function. However, the complexity of living systems obfuscates the mechanisms of mechanotransduction, and hence the study of these processes in vitro has been critical in characterising the function of existing mechanosensitive membrane proteins. Synthetic cells are biomolecular compartments that aim to mimic the organisation, functionality and behaviours of biological systems, and represent the next step in the development of in vitro cell models. In recent years, mechanosensitive channels have been incorporated into synthetic cells to create de novo mechanosensitive signalling pathways. Here, I will discuss these developments, from the molecular parts used to construct existing pathways, the functionality of such systems, and potential future directions in engineering synthetic mechanotransduction. The recapitulation of mechanotransduction in synthetic biology will facilitate an improved understanding of biological signalling through the study of molecular interactions across length scales, whilst simultaneously generating new biotechnologies that can be applied as diagnostics, microreactors and therapeutics.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How parental factors shape the plant embryo.","authors":"Alexa-Maria Wangler, Martin Bayer","doi":"10.1042/BST20240369","DOIUrl":"https://doi.org/10.1042/BST20240369","url":null,"abstract":"<p><p>Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development. Parent-of-origin effects are phenotypic effects that depend on whether a causal gene is inherited from the mother or the father. They are discussed in the context of the parental conflict theory in relation to nutrient allocation to the offspring. Imprinting is an important mechanism leading to uniparental gene expression in the endosperm and maternal control of its development. The parental conflict theory would predict that, with limited resources available, there is a competition between paternal alleles to increase nutrient supply, allowing rapid development and seed filling. A parental conflict might therefore shape the evolution of genes that can influence the allocation of nutrients to the seeds. However, we will also discuss other possible causes that might select genes for uniparental contribution. New data show that parent-of-origin effects also occur during the early stages of embryo development. These appear to be caused primarily by the carry-over of gamete-derived factors. In this review, we will highlight the molecular pathways that control apical-basal patterning in the early embryo and discuss recent findings in the context of the parental conflict theory and alternative explanations.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A framework for understanding and investigating polyphosphate-protein interactions.","authors":"Liam McCarthy, Kanchi Baijal, Michael Downey","doi":"10.1042/BST20240678","DOIUrl":"https://doi.org/10.1042/BST20240678","url":null,"abstract":"<p><p>Many prokaryotic and eukaryotic cells store inorganic phosphate in the form of polymers called polyphosphate (polyP). There has been an explosion of interest in polyP over the past decade, in part due to newly suggested roles related to diverse aspects of human health. The physical interaction of polyP chains with specific proteins has been proposed to regulate cellular homeostasis and modulate signaling pathways in response to environmental changes. Recently, several studies have challenged existing models for how polyP interacts with its protein targets, while identifying new motifs that are capable of binding to polyP. In this review, we summarize these findings, delineate the functional implications for polyP-protein interactions at the molecular level, and define open questions that should be addressed to propel the field forward.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oda Helene Schiøtz, Sven Klumpe, Juergen M Plitzko, Christoph J O Kaiser
{"title":"Cryo-electron tomography: en route to the molecular anatomy of organisms and tissues.","authors":"Oda Helene Schiøtz, Sven Klumpe, Juergen M Plitzko, Christoph J O Kaiser","doi":"10.1042/BST20240173","DOIUrl":"10.1042/BST20240173","url":null,"abstract":"<p><p>Cryo-electron tomography (cryo-ET) has become a key technique for obtaining structures of macromolecular complexes in their native environment, assessing their local organization and describing the molecular sociology of the cell. While microorganisms and adherent mammalian cells are common targets for tomography studies, appropriate sample preparation and data acquisition strategies for larger cellular assemblies such as tissues, organoids or small model organisms have only recently become sufficiently practical to allow for in-depth structural characterization of such samples in situ. These advances include tailored lift-out approaches using focused ion beam (FIB) milling, and improved data acquisition schemes. Consequently, cryo-ET of FIB lamellae from large volume samples can complement ultrastructural analysis with another level of information: molecular anatomy. This review highlights the recent developments towards molecular anatomy studies using cryo-ET, and briefly outlines what can be expected in the near future.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2415-2425"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The systems and interactions underpinning complex cell wall patterning.","authors":"Eva E Deinum","doi":"10.1042/BST20230642","DOIUrl":"10.1042/BST20230642","url":null,"abstract":"<p><p>Cell walls can confer amazing properties to plant cells, particularly if they have complex patterns. Complex cell wall patterns in the primary cell wall often lead to complex cell shapes, whereas in the secondary cell wall they lead to advanced material properties that prepare cells for mechanically demanding tasks. Not surprisingly, many of these structures are found in water transporting tissues. In this review, I compare the mechanisms controlling primary and secondary cell wall patterns, with emphasis on water transporting tissues and insights derived from modeling studies. Much of what we know about this is based on complex cell shapes and primary xylem patterns, leading to an emphasis on the Rho-of-plants - cortical microtubule - cellulose microfibril system for secondary cell wall patterning. There is a striking diversity of secondary cell wall patterns with important functional benefits, however, about which we know much less and that may develop in substantially different ways.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2385-2398"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastasia S Shulha, Vita Shyshenko, Ryan S Schibalski, Adam C Jones, Jessica L Faulkner, Krisztian Stadler, Daria V Ilatovskaya
{"title":"An update on the role of sex hormones in the function of the cardiorenal mitochondria.","authors":"Anastasia S Shulha, Vita Shyshenko, Ryan S Schibalski, Adam C Jones, Jessica L Faulkner, Krisztian Stadler, Daria V Ilatovskaya","doi":"10.1042/BST20240046","DOIUrl":"10.1042/BST20240046","url":null,"abstract":"<p><p>Multiple studies have highlighted the crucial role of mitochondrial bioenergetics in understanding the progression of cardiorenal diseases, revealing new potential treatment targets related to mitochondrial metabolism. There are well-established sexual dimorphisms in cardiac and renal physiology, with premenopausal females being generally protected from pathology compared with males. The mechanisms of this protection remain to be fully elucidated, however, they clearly depend, at least in part, on sex hormones. Sex hormones contribute to regulating mitochondrial function, and vice versa, highlighting the existence of a bidirectional relationship pivotal for cellular energy metabolism; however, there are still large gaps in knowledge when the sex differences in mitochondrial bioenergetics in health and disease are concerned. This manuscript provides an overview of the new evidence that has been accumulated regarding the role of sex hormones in renal and cardiac mitochondria-dependent cellular energetics, metabolism, and signaling, mainly focusing on the data obtained within the last 3-5 years. We briefly discuss mitochondrial function and different types of sex hormones for the reader and then focus on novel research underscoring the emerging mitochondrial pathways regulated by sex hormones, which might be of interest for the development of novel therapeutic strategies for cardiorenal conditions.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2307-2319"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Peeking into the future: inferring mechanics in dynamical tissues.","authors":"Augusto Borges, Osvaldo Chara","doi":"10.1042/BST20230225","DOIUrl":"10.1042/BST20230225","url":null,"abstract":"<p><p>Cells exert forces on each other and their environment, shaping the tissue. The resulting mechanical stresses can be determined experimentally or estimated computationally using stress inference methods. Over the years, mechanical stress inference has become a non-invasive, low-cost computational method for estimating the relative intercellular stresses and intracellular pressures of tissues. This mini-review introduces and compares the static and dynamic modalities of stress inference, considering their advantages and limitations. To date, most software has focused on static inference, which requires only a single microscopy image as input. Although applicable in quasi-equilibrium states, this approach neglects the influence that cell rearrangements might have on the inference. In contrast, dynamic stress inference relies on a time series of microscopy images to estimate stresses and pressures. Here, we discuss both static and dynamic mechanical stress inference in terms of their physical, mathematical, and computational foundations and then outline what we believe are promising avenues for in silico inference of the mechanical states of tissues.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2579-2592"},"PeriodicalIF":3.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}