为什么印迹在多能干细胞中不稳定?

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Maria Arez, Simão Teixeira da Rocha
{"title":"为什么印迹在多能干细胞中不稳定?","authors":"Maria Arez, Simão Teixeira da Rocha","doi":"10.1042/BST20243003","DOIUrl":null,"url":null,"abstract":"<p><p>Pluripotent stem cells (PSCs) possess the remarkable ability to self-renew and differentiate into nearly any cell type, making them invaluable for both research and therapeutic applications. Despite these powerful attributes, PSCs are vulnerable to genetic and epigenetic instabilities that can undermine their reliability and safety. While genetic abnormalities can be routinely monitored with established guidelines, epigenetic instabilities often go unchecked. Among the most recurrent epigenetic defects in PSCs are errors in genomic imprinting - a process that governs parent-of-origin-specific monoallelic expression of certain genes through differential marking of the two parental alleles by DNA methylation. When disrupted, it becomes a source of a dozen developmental conditions known as imprinting diseases. In PSCs, once imprinting errors arise, they remain throughout cellular differentiation, casting uncertainty over the use of PSC-derived cells for disease modelling and regenerative medicine. In this review, we provide an overview of imprinting defects in both mouse and human PSCs, delving into their origins and consequences. We also discuss potential correction strategies that aim to enhance imprinting stability, ultimately paving the way for safer, more reliable PSC use in research and clinical applications.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why are imprints unstable in pluripotent stem cells?\",\"authors\":\"Maria Arez, Simão Teixeira da Rocha\",\"doi\":\"10.1042/BST20243003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pluripotent stem cells (PSCs) possess the remarkable ability to self-renew and differentiate into nearly any cell type, making them invaluable for both research and therapeutic applications. Despite these powerful attributes, PSCs are vulnerable to genetic and epigenetic instabilities that can undermine their reliability and safety. While genetic abnormalities can be routinely monitored with established guidelines, epigenetic instabilities often go unchecked. Among the most recurrent epigenetic defects in PSCs are errors in genomic imprinting - a process that governs parent-of-origin-specific monoallelic expression of certain genes through differential marking of the two parental alleles by DNA methylation. When disrupted, it becomes a source of a dozen developmental conditions known as imprinting diseases. In PSCs, once imprinting errors arise, they remain throughout cellular differentiation, casting uncertainty over the use of PSC-derived cells for disease modelling and regenerative medicine. In this review, we provide an overview of imprinting defects in both mouse and human PSCs, delving into their origins and consequences. We also discuss potential correction strategies that aim to enhance imprinting stability, ultimately paving the way for safer, more reliable PSC use in research and clinical applications.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20243003\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20243003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多能干细胞(PSCs)具有显著的自我更新和分化成几乎任何细胞类型的能力,使其在研究和治疗应用中都具有不可估量的价值。尽管具有这些强大的特性,但psc容易受到遗传和表观遗传不稳定性的影响,从而破坏其可靠性和安全性。虽然遗传异常可以通过既定的指导方针进行常规监测,但表观遗传不稳定性往往得不到控制。在psc中最常见的表观遗传缺陷是基因组印记错误,这是一个通过DNA甲基化对两个亲本等位基因进行差异标记来控制某些基因的亲本特异性单等位基因表达的过程。一旦被破坏,它就会成为一打发育疾病的根源,这些疾病被称为印记疾病。在psc中,一旦印记错误出现,它们就会在整个细胞分化过程中持续存在,这给psc衍生细胞用于疾病建模和再生医学带来了不确定性。在这篇综述中,我们提供了小鼠和人类psc中印迹缺陷的概述,深入研究了它们的起源和后果。我们还讨论了旨在提高印迹稳定性的潜在校正策略,最终为PSC在研究和临床应用中更安全、更可靠的使用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why are imprints unstable in pluripotent stem cells?

Pluripotent stem cells (PSCs) possess the remarkable ability to self-renew and differentiate into nearly any cell type, making them invaluable for both research and therapeutic applications. Despite these powerful attributes, PSCs are vulnerable to genetic and epigenetic instabilities that can undermine their reliability and safety. While genetic abnormalities can be routinely monitored with established guidelines, epigenetic instabilities often go unchecked. Among the most recurrent epigenetic defects in PSCs are errors in genomic imprinting - a process that governs parent-of-origin-specific monoallelic expression of certain genes through differential marking of the two parental alleles by DNA methylation. When disrupted, it becomes a source of a dozen developmental conditions known as imprinting diseases. In PSCs, once imprinting errors arise, they remain throughout cellular differentiation, casting uncertainty over the use of PSC-derived cells for disease modelling and regenerative medicine. In this review, we provide an overview of imprinting defects in both mouse and human PSCs, delving into their origins and consequences. We also discuss potential correction strategies that aim to enhance imprinting stability, ultimately paving the way for safer, more reliable PSC use in research and clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信