Soneya Majumdar, Pallavi Ghosh, Rajendra K Agrawal
{"title":"Multifaceted roles of mycobacterial HflX: ribosome splitting, rRNA disordering, and drug resistance.","authors":"Soneya Majumdar, Pallavi Ghosh, Rajendra K Agrawal","doi":"10.1042/BST20253084","DOIUrl":null,"url":null,"abstract":"<p><p>High frequency of lysogenization X (HflX) is an enigmatic protein that has been implicated in rescuing translationally stalled ribosomes and macrolide-lincosamide antibiotic resistance, as well as in ribosome biogenesis. The protein shows significant sequence and structural variation across species, including variation among paralogs within the same organism. Recent cryo-EM structure determination of ribosome-HflX complexes from different eubacterial species has provided important mechanistic clues to HflX function. Mycobacterial HflXs carry a distinct N-terminal extension (NTE) and a small insertion, as compared with their eubacterial homologs, suggesting that the mycobacterial HflX could have distinct functional mechanisms. This article presents a brief overview of these studies highlighting (i) what we have learned from recent multiple mycobacterial ribosome-HflX complex structures and (ii) the roles of mycobacteria-specific segments in ribosomal RNA disordering that leads to ribosome splitting to rescue translation by removing the drug-bound stalled ribosome from the translationally active polysome pool. Future studies needed to resolve some of the outstanding issues related to HflX function and dynamics are also discussed.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12493154/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20253084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High frequency of lysogenization X (HflX) is an enigmatic protein that has been implicated in rescuing translationally stalled ribosomes and macrolide-lincosamide antibiotic resistance, as well as in ribosome biogenesis. The protein shows significant sequence and structural variation across species, including variation among paralogs within the same organism. Recent cryo-EM structure determination of ribosome-HflX complexes from different eubacterial species has provided important mechanistic clues to HflX function. Mycobacterial HflXs carry a distinct N-terminal extension (NTE) and a small insertion, as compared with their eubacterial homologs, suggesting that the mycobacterial HflX could have distinct functional mechanisms. This article presents a brief overview of these studies highlighting (i) what we have learned from recent multiple mycobacterial ribosome-HflX complex structures and (ii) the roles of mycobacteria-specific segments in ribosomal RNA disordering that leads to ribosome splitting to rescue translation by removing the drug-bound stalled ribosome from the translationally active polysome pool. Future studies needed to resolve some of the outstanding issues related to HflX function and dynamics are also discussed.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.