{"title":"微生理系统发育中血液微血管结构形态发生概述的研究进展。","authors":"Ana Ximena Monroy-Romero, Mathieu Hautefeuille","doi":"10.1042/BST20240572","DOIUrl":null,"url":null,"abstract":"<p><p>Microphysiological systems (MPSs) are complex cell culture platforms, designed to closely replicate the cellular microenvironment of tissues under physiopathological conditions. A critical aspect of these systems is the integration of a vascular network, which facilitates nutrient exchange, supports heterotypic cell interactions, and increases culture viability. A top-down engineering approach, where a prefabricated scaffold is used to introduce endothelial cells, has been widely employed. However, promoting self-organization through a bottom-up paradigm has proven more effective in recapitulating the geometric features of microvasculature, particularly the network nature of it as the capillary diameters. In vivo vasculature formation occurs primarily through two self-organization processes: vasculogenesis and angiogenesis. These processes follow a series of co-ordinated and regulated steps, driven by microenvironmental cues such as cell identity and heterogeneity, soluble factor distribution, extracellular matrix composition and mechanics, and flow-induced mechanical strains. By incorporating these parameters into in vitro platforms, researchers can develop physiologically relevant vascularized MPS for applications in drug development and disease modeling. This review explores the key mechanisms underlying vascular self-organization and highlights how they are being integrated into tissue-specific MPS platforms to achieve vascularization, which enhances the potential of MPS for studying various physiological and pathological processes.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress in recapitulating morphogenesis of blood microvascular structures for microphysiological systems development.\",\"authors\":\"Ana Ximena Monroy-Romero, Mathieu Hautefeuille\",\"doi\":\"10.1042/BST20240572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microphysiological systems (MPSs) are complex cell culture platforms, designed to closely replicate the cellular microenvironment of tissues under physiopathological conditions. A critical aspect of these systems is the integration of a vascular network, which facilitates nutrient exchange, supports heterotypic cell interactions, and increases culture viability. A top-down engineering approach, where a prefabricated scaffold is used to introduce endothelial cells, has been widely employed. However, promoting self-organization through a bottom-up paradigm has proven more effective in recapitulating the geometric features of microvasculature, particularly the network nature of it as the capillary diameters. In vivo vasculature formation occurs primarily through two self-organization processes: vasculogenesis and angiogenesis. These processes follow a series of co-ordinated and regulated steps, driven by microenvironmental cues such as cell identity and heterogeneity, soluble factor distribution, extracellular matrix composition and mechanics, and flow-induced mechanical strains. By incorporating these parameters into in vitro platforms, researchers can develop physiologically relevant vascularized MPS for applications in drug development and disease modeling. This review explores the key mechanisms underlying vascular self-organization and highlights how they are being integrated into tissue-specific MPS platforms to achieve vascularization, which enhances the potential of MPS for studying various physiological and pathological processes.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20240572\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20240572","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Progress in recapitulating morphogenesis of blood microvascular structures for microphysiological systems development.
Microphysiological systems (MPSs) are complex cell culture platforms, designed to closely replicate the cellular microenvironment of tissues under physiopathological conditions. A critical aspect of these systems is the integration of a vascular network, which facilitates nutrient exchange, supports heterotypic cell interactions, and increases culture viability. A top-down engineering approach, where a prefabricated scaffold is used to introduce endothelial cells, has been widely employed. However, promoting self-organization through a bottom-up paradigm has proven more effective in recapitulating the geometric features of microvasculature, particularly the network nature of it as the capillary diameters. In vivo vasculature formation occurs primarily through two self-organization processes: vasculogenesis and angiogenesis. These processes follow a series of co-ordinated and regulated steps, driven by microenvironmental cues such as cell identity and heterogeneity, soluble factor distribution, extracellular matrix composition and mechanics, and flow-induced mechanical strains. By incorporating these parameters into in vitro platforms, researchers can develop physiologically relevant vascularized MPS for applications in drug development and disease modeling. This review explores the key mechanisms underlying vascular self-organization and highlights how they are being integrated into tissue-specific MPS platforms to achieve vascularization, which enhances the potential of MPS for studying various physiological and pathological processes.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.