Battery EnergyPub Date : 2024-12-20DOI: 10.1002/bte2.20240070
Sungwoo Kim, Md Amir Sohel, Ji Chan Kim, Sung Oh Cho
{"title":"Electron-Irradiated Montmorillonite/Polyethylene Composite Separator for High-Performance Lithium-Ion Battery","authors":"Sungwoo Kim, Md Amir Sohel, Ji Chan Kim, Sung Oh Cho","doi":"10.1002/bte2.20240070","DOIUrl":"https://doi.org/10.1002/bte2.20240070","url":null,"abstract":"<p>Separators play a significant role in the safety and performance of lithium-ion batteries. In this study, composite separators were fabricated using montmorillonite (MMT) as a filler in a high-density polyethylene (HDPE) matrix, followed by electron irradiation to enhance the safety and performance of separator. Electron irradiation induces chemical bonds by crosslinking between HDPE chains, also between the MMT and HDPE. MMT features a two-dimensional layered structure with a high surface area, providing abundant crosslinking sites. MMT is treated with a silane coupling agent, which induces layer exfoliation. The exfoliation increases the surface area of MMT, thereby providing more crosslinking sites. Additionally, the surface modification of MMT enhances its affinity with HDPE, leading to better dispersion of MMT within the HDPE matrix. Simultaneously, electron irradiation in an air atmosphere generates polar functional groups, improving the electrolyte affinity of the separator. Consequently, the safety of the MMT composite separator was significantly enhanced, exhibiting a high puncture strength of 0.52 N μm<sup>−1</sup> and a thermal shrinkage rate of 21.4% at 135°C for 30 min. Li//LCO cells using the composite separator demonstrated superb cycle stability with a discharge retention of 98.7% and a coulombic efficiency of 99.6% after 200 cycles at 0.5 C, and exhibited rate capability maintaining 74.5% of the capacity at 20 C compared to 0.5 C.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Additives With Phenyl and Acid Anhydride Functional Groups on the Wide Temperature Operation Performance of LiNi0.8Co0.1Mn0.1O2||SiO/Graphite Pouch Cells","authors":"Chengyun Wang, Jin Chen, Yaowei Feng, Xiuqin Deng, Xiaoxian Pang, Hanbo Zou, Wei Yang, Shengzhou Chen, Xijun Xu","doi":"10.1002/bte2.20240042","DOIUrl":"https://doi.org/10.1002/bte2.20240042","url":null,"abstract":"<p>High-nickel LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode paired with silicon-based graphite (SiO/Gr) is pivotal for enhancing the energy density of lithium-ion batteries (LIBs). However, the high reactivity of NCM811 with the electrolyte and the volumetric expansion issues associated with SiO/Gr pose significant challenges to their practical application. To settle these issues, we explore the impact of additives with phenyl and acid anhydride moieties on the performance of NCM811‖SiO/Gr pouch cells across a wide temperature range of −20°C~60°C. Acid anhydride additives are capable of diminishing the internal resistance in NCM811‖SiO/Gr pouch cells, as well as curbing gas evolution and thickness increase during the operational phase. Notably, the batteries enriched with citraconic anhydride (CAn) and succinic anhydride (SAn) additives after 120 cycles at 45°C demonstrated enhanced capacity retention from 83.2% to 88.1% and 85.5%, respectively. Intriguingly, the inclusion of phenyl-containing additives in the electrolyte was found to be advantageous for NCM811‖SiO/Gr pouch cells' low-temperature performance. Furthermore, neither type of functional group significantly enhanced performance at room conditions. Consequently, the combination of additives is necessary to fulfill the stringent requirements of LIBs for extreme environment applications. This work guides designing composite electrolytes for high energy density wide temperature operation LIBs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-12-18DOI: 10.1002/bte2.20240046
Xiao Zhang, Yanhuai Ding
{"title":"Research Progress on the Application of MOF Materials in Lithium-Ion Batteries","authors":"Xiao Zhang, Yanhuai Ding","doi":"10.1002/bte2.20240046","DOIUrl":"https://doi.org/10.1002/bte2.20240046","url":null,"abstract":"<p>Lithium-ion batteries (LIBs) have established themselves as the preferred power sources for both pure electric and hybrid vehicles, attributable to their exceptional characteristics, including prolonged cycle life, elevated energy density, and minimal self-discharge rates. Metal-organic frameworks (MOFs), as innovative functional molecular crystal materials, exhibit promising application prospects in LIBs. This paper provides a comprehensive overview of the latest advancements in the synthesis techniques and structural modulation of MOFs and their derivative materials. It particularly emphasizes a thorough exploration of the utilization of MOFs and their derivatives in the anode, cathode, and separators of LIBs. Additionally, this paper delves into the current obstacles encountered by MOFs in LIB applications and offers insights into their potential future development.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-12-18DOI: 10.1002/bte2.20240016
Mohammadhosein Safari
{"title":"A Perspective on the Battery Value Chain and the Future of Battery Electric Vehicles","authors":"Mohammadhosein Safari","doi":"10.1002/bte2.20240016","DOIUrl":"https://doi.org/10.1002/bte2.20240016","url":null,"abstract":"<p>Even the most conservative projections suggest that significantly higher demand for batteries in the transport sector is expected in the coming years. A relevant concern is the supply security of lithium-ion batteries, which has been raised and discussed in existing literature in the context of sustainability and the technological readiness of different parts of the battery value chain. However, an up-to-date analysis of this value chain is beneficial to spotlight the main current bottlenecks. This perspective article aims to make a worthwhile contribution in two respects: first, to encourage further research in the techno-economic aspects of lithium-ion and beyond battery chemistries; second, to aid investors and policymakers in the decision-making process paving the road for the realization of the sustainability goals in the transport sector.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining","authors":"Samrudh Devanahalli Bokkassam, Jegatha Nambi Krishnan","doi":"10.1002/bte2.20240022","DOIUrl":"https://doi.org/10.1002/bte2.20240022","url":null,"abstract":"<p>Lithium ion batteries (LIBs) have brought about a revolution in the electronics industry and are now almost a part of our everyday activities. They are on the verge of finding application in almost every electronic rechargeable device and have a bright future ahead. With the recent discovery of substantial reserves of lithium in India, along with the favourable government policies for the usage of electric vehicles (EVs), LIBs are expected to play a major role in meeting sustainable energy goals. Though LIBs have become a commercial success, they face many challenges, such as high cost of production, thermal runaway and overcharging, that might hamper their extensive use. Many research studies have been conducted regarding the operation of LIB, with safety being a concern. With rapid technology development, going nanoscale for LIB production has become achievable and valuable as it has been reported to increase the shelf life of the battery. In this review, recycling of spent LIBs is discussed, as the extraction of the leftover lithium and other minerals is possible through recycling process. The advantages and drawbacks of deep-sea lithium mining have been discussed, as it is explored as an alternative to major lithium sources due to the rapid depletion of land mining sources. Its impact on the environment and the mineral market has been assessed. This review paper attempts to give an overview of all the vital characteristics of an LIB, such as life cycle, fast charging and overcharging, while covering strategies for overcoming challenges faced in the functioning of LIBs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-11-13DOI: 10.1002/bte2.20240035
Yujia Xue, Jinghao Huo, Xin Wang, Yuzhen Zhao
{"title":"ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors","authors":"Yujia Xue, Jinghao Huo, Xin Wang, Yuzhen Zhao","doi":"10.1002/bte2.20240035","DOIUrl":"https://doi.org/10.1002/bte2.20240035","url":null,"abstract":"<p>Over the past decade, the extensive consumption of finite energy resources has caused severe environmental pollution. Meanwhile, the promotion of renewable energy sources is limited by their intermittent and regional nature. Thus, developing effective energy storage and conversion technologies and devices holds considerable importance. Zinc-ion hybrid supercapacitors (ZISCs) merge the beneficial aspects of both supercapacitors and batteries, rendering them an exceptionally promising energy storage method. As an important cathode material for ZISCs, the tunnel structure MnO<sub>2</sub> has poor conductivity and structural stability. Herein, the Zn<sub>x</sub>MnO<sub>2</sub>/PPy (ZMOP) electrode materials are prepared by hydrothermal method. Doping with Zn<sup>2+</sup> is used to enhance its structural stability, while adding polypyrrole to improve its conductivity. Therefore, the fabricated ZMOP cathode presents superb specific capacity (0.1 A g<sup>−1</sup>, 156.4 mAh g<sup>−1</sup>) and remarkable cycle performance (82.6%, 5000 cycles, 0.2 A g<sup>−1</sup>). Furthermore, the assembled aqueous ZISCs with ZMOP cathode and PPy-derived porous carbon nanotube anode obtain a superb capacity of 109 F g<sup>−1</sup> at 0.1 A g<sup>−1</sup>. Meanwhile, at a power density of 867 W kg<sup>−1</sup>, the corresponding energy density can achieve 20 Wh kg<sup>−1</sup>. And over 5000 cycles at 0.2 A g<sup>−1</sup>, the cycle performance of ZISCs maintains at 86.4%, which exhibits excellent cycle stability. This suggests that ZMOP nanowires are potential cathode materials for superior-performance aqueous ZISCs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-11-06DOI: 10.1002/bte2.20240032
Nurul Akmal Che Lah
{"title":"Manipulation in the In Situ Growth Design Parameters of Aqueous Zinc-Based Electrodes for Batteries: The Fundamentals and Perspectives","authors":"Nurul Akmal Che Lah","doi":"10.1002/bte2.20240032","DOIUrl":"https://doi.org/10.1002/bte2.20240032","url":null,"abstract":"<p>Precise exploitation of the growth of Zn metal anode in a power converter system has re-emerged as one of the technological interests that have surged globally in the past 5 years, specifically to improve the practical use of deep cycling metal batteries. In this review, the in situ architectures of aqueous Zn metal-based batteries focusing on the intrinsic geometrical building block and their respective mode of assembly classifying the deposition morphologies are scrutinised and discussed. The fundamental electrochemical kinetic principles and the associated critical issues, especially associated with the metal plague deposition that influences the morphology of deposited Zn, are considered. Also, the growing interest in the interphase system, which has an intense influence in characterising the types of Zn deposition morphology, is included. Consideration of the fundamental crystal features of Zn, endowing the predominant key for its growth assembly, is provided. Last, the review offers perspectives on the current progress of Zn–Air batteries in the application of electric vehicles.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-11-06DOI: 10.1002/bte2.20240029
Muhammad Tahir, Muhammad Asim Farid, Elvin Aliyev, Zhenfeng Huang, Ji-Jun Zou, Shangfeng Du
{"title":"Cobalt Phosphide Decorating Metallic Cobalt With a Nitrogen-Doped Carbon Nano-Shell Surpasses Platinum Group Metals for Oxygen Electrocatalysis Applications","authors":"Muhammad Tahir, Muhammad Asim Farid, Elvin Aliyev, Zhenfeng Huang, Ji-Jun Zou, Shangfeng Du","doi":"10.1002/bte2.20240029","DOIUrl":"https://doi.org/10.1002/bte2.20240029","url":null,"abstract":"<p>It has been a long-standing challenge to cultivate capable and resilient oxygen electrocatalysts with higher activity, low price, and long lifetime to replace the commonly used platinum group metals, i.e., Pt for oxygen reduction reaction (ORR) and RuO<sub>2</sub>/IrO<sub>2</sub> for oxygen evolution reaction (OER). This work presents a promising approach to address the challenges associated with oxygen electrocatalysis by introducing a cobalt phosphide/metallic cobalt (Co<sub>2</sub>P/Co) core wrapped in a nitrogen-doped conductive carbon (CN) nano-shell, demonstrated as Co<sub>2</sub>P/Co@NC. The strong chemical bonding between metallic cobalt and phosphorus, nitrogen and conductive carbon contributes to the enhanced conductivity and stability of the electrocatalyst. The nitrogen doping in the carbon shell provides additional Co–N active sites, which are crucial for ORR activity. Co<sub>2</sub>P/Co@NC demonstrates promising activity and stability compared to noble metals such as Pt for ORR in an alkaline medium. This suggests its potential as a cost-effective alternative to Pt-based catalysts. Further, due to factors such as strong cobalt-phosphide bonding, high cobalt oxidation states and excellent conductivity of the nitrogen-doped carbon shell, the Co<sub>2</sub>P/Co@NC outperforms noble metal oxides like iridium dioxide (IrO<sub>2</sub>) and ruthenium dioxide (RuO<sub>2</sub>) for OER. Co<sub>2</sub>P/Co@NC exhibits a low potential difference of 0.63 V, which is among the lowest reported for bifunctional electrocatalysts capable of both ORR and OER. Overall, the described strategy offers a promising avenue for developing efficient, low-cost and stable electrocatalysts for oxygen reactions, which are crucial for various electrochemical energy conversion and storage technologies, such as fuel cells and metal–air batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery EnergyPub Date : 2024-10-17DOI: 10.1002/bte2.20240025
Chinmayee Padwal, Xijue Wang, Hong Duc Pham, Linh Thi My Hoang, Sagadevan Mundree, Deepak Dubal
{"title":"Efficient and swift heating technique for crafting highly graphitized carbon and crystalline silicon (Si@GC) composite anodes for lithium-ion batteries","authors":"Chinmayee Padwal, Xijue Wang, Hong Duc Pham, Linh Thi My Hoang, Sagadevan Mundree, Deepak Dubal","doi":"10.1002/bte2.20240025","DOIUrl":"https://doi.org/10.1002/bte2.20240025","url":null,"abstract":"<p>The synthesis of battery materials from biomass as feedstock is not only effective but also aligns with sustainable practices. However, current methods like slow pyrolysis/heating are both energy-intensive and economically impractical. Hence, integrating energy-efficient technologies becomes imperative to curtail substantial energy consumption and, consequently, minimize carbon dioxide (CO<sub>2</sub>) emissions during electricity usage. Herein, we employed a one-step pyrolysis/reduction based on the microwave heating method to synthesize a composite of high-purity silicon and highly graphitized carbon (Si@GC) from rice husk as feedstock. Compared to the conventional heating methods, the Si@GC samples prepared via the microwave heating method required less time (30–50 min). Benefiting from ultrahigh heating rates, the highly graphitized carbon and crystalline silicon composite was successfully synthesized. The synthesis by microwave irradiation showed homogenous material, excellent surface area, essential functional groups, and crystallinity revealing the outstanding reaction kinetics to form the material. The as-synthesized Si@GC composite anode material delivered a high discharge capacity of 799 mAh/g with high cyclic stability of ~71% over 120 cycles. The ex situ ToF-SIMS revealed great inorganic SEI composition, mainly consisting of the fluorinated species and carbonate species produced at the initial cycle. This investigation provides a novel rapid heating method for the synthesis of battery materials, which can also be extended for other materials and applications.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}