Influence of Overdischarge Depth on the Aging and Thermal Safety of LiNi0.5Co0.2Mn0.3O2/Graphite Cells

Battery Energy Pub Date : 2025-03-04 DOI:10.1002/bte2.70008
Xiaoyu Yang, Zhipeng Wang, Song Xie
{"title":"Influence of Overdischarge Depth on the Aging and Thermal Safety of LiNi0.5Co0.2Mn0.3O2/Graphite Cells","authors":"Xiaoyu Yang,&nbsp;Zhipeng Wang,&nbsp;Song Xie","doi":"10.1002/bte2.70008","DOIUrl":null,"url":null,"abstract":"<p>Overdischarge is one of the potential factors that affect the performance and safety of lithium-ion batteries (LIBs) during application. In this study, the aging behavior and thermal safety of LIBs at different overdischarge cut-off voltages are investigated. The results show that overdischarge significantly affects the discharge ability of the battery, with a capacity decay rate of 38.2% at an overdischarge cut-off voltage is 0.5 V. Electrochemical test results indicate that overdischarge accelerates the loss of the active materials and the increase of impedance. Quantitative analysis shows that the conductive loss and lithium inventory loss are the main causes of battery aging. The disassembly images and further physicochemical characterization indicate that with the decrease of overdischarge voltage, the dissolution of copper current collector and the increase of electrode surface attachments intensify. The differential scanning calorimetry test indicates that the thermal stability of the anode is reduced. These aging behaviors lead to the loss of active materials, the damage of the electrode structure, and the increase of gas production inside the overdischarge batteries, which results in the advance of the thermal runaway time, the decrease of the thermal runaway onset temperature and the thermal runaway peak temperature.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.70008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Overdischarge is one of the potential factors that affect the performance and safety of lithium-ion batteries (LIBs) during application. In this study, the aging behavior and thermal safety of LIBs at different overdischarge cut-off voltages are investigated. The results show that overdischarge significantly affects the discharge ability of the battery, with a capacity decay rate of 38.2% at an overdischarge cut-off voltage is 0.5 V. Electrochemical test results indicate that overdischarge accelerates the loss of the active materials and the increase of impedance. Quantitative analysis shows that the conductive loss and lithium inventory loss are the main causes of battery aging. The disassembly images and further physicochemical characterization indicate that with the decrease of overdischarge voltage, the dissolution of copper current collector and the increase of electrode surface attachments intensify. The differential scanning calorimetry test indicates that the thermal stability of the anode is reduced. These aging behaviors lead to the loss of active materials, the damage of the electrode structure, and the increase of gas production inside the overdischarge batteries, which results in the advance of the thermal runaway time, the decrease of the thermal runaway onset temperature and the thermal runaway peak temperature.

Abstract Image

过放电深度对LiNi0.5Co0.2Mn0.3O2/石墨电池老化及热安全性的影响
过放电是影响锂离子电池使用过程中性能和安全性的潜在因素之一。本文研究了锂离子电池在不同过放电截止电压下的老化行为和热安全性。结果表明:过放电显著影响电池的放电能力,在过放电截止电压为0.5 V时,电池容量衰减率为38.2%;电化学测试结果表明,过放电加速了活性材料的损耗和阻抗的增大。定量分析表明,导电损耗和锂库存损耗是导致电池老化的主要原因。分解图像和进一步的物理化学表征表明,随着过放电电压的降低,铜集电极的溶解加剧,电极表面附着物增加。差示扫描量热测试表明,阳极的热稳定性降低。这些老化行为导致活性物质损失、电极结构破坏、过放电电池内部产气量增加,导致热失控时间提前、热失控起始温度和热失控峰值温度降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信