Cover Image, Volume 4, Issue 3, May 2025

Battery Energy Pub Date : 2025-05-20 DOI:10.1002/bte2.12191
{"title":"Cover Image, Volume 4, Issue 3, May 2025","authors":"","doi":"10.1002/bte2.12191","DOIUrl":null,"url":null,"abstract":"<p><b>Front Cover:</b> Transition metal molybdates have emerged as promising electrode materials for energy storage applications. In the article number BTE.20240073, D. S. Sawant, S. B. Kulkarni, D. P. Dubal, and G. M. Lohar present an innovative approach combining machine learning (ML) techniques to predict and analyze how structural, compositional, and synthesis parameters influence the electrochemical performance of molybdates. By identifying the critical factors that govern their energy storage behavior, the study offers valuable insights into the rational design of molybdate-based composites. The authors also review morphology-dependent supercapacitor performance, highlighting how the integration of experimental data with ML-driven optimization can accelerate the development of next-generation energy storage systems.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.12191","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.12191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Front Cover: Transition metal molybdates have emerged as promising electrode materials for energy storage applications. In the article number BTE.20240073, D. S. Sawant, S. B. Kulkarni, D. P. Dubal, and G. M. Lohar present an innovative approach combining machine learning (ML) techniques to predict and analyze how structural, compositional, and synthesis parameters influence the electrochemical performance of molybdates. By identifying the critical factors that govern their energy storage behavior, the study offers valuable insights into the rational design of molybdate-based composites. The authors also review morphology-dependent supercapacitor performance, highlighting how the integration of experimental data with ML-driven optimization can accelerate the development of next-generation energy storage systems.

封面图片,第四卷,第三期,2025年5月
前封面:过渡金属钼酸盐已经成为储能应用中很有前途的电极材料。在编号为BTE.20240073的文章中,d.s. Sawant, s.b. Kulkarni, d.p. Dubal和g.m. Lohar提出了一种结合机器学习(ML)技术的创新方法,以预测和分析结构,组成和合成参数如何影响钼酸盐的电化学性能。通过确定控制其能量存储行为的关键因素,该研究为钼酸盐基复合材料的合理设计提供了有价值的见解。作者还回顾了与形态相关的超级电容器性能,强调了如何将实验数据与机器学习驱动的优化相结合,以加速下一代储能系统的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信