{"title":"利用光热效应定制高性能锌离子混合超级电容器的MXene材料磷端子","authors":"Xiaochun Wei, Yongfang Liang, Hailong Shen, Hongying Zhao, Jinyu Wu, Haifu Huang, Xianqing Liang, Wenzheng Zhou, Shuaikai Xu, Huangzhong Yu","doi":"10.1002/bte2.20240117","DOIUrl":null,"url":null,"abstract":"<p>MXene materials exhibit outstanding pseudocapacitive performance, holding great potential for application in zinc-ion hybrid supercapacitors (Zn-HSCs). Exploring the effect of the surface terminal regulation on the performance of MXene is crucial yet challenging. In this study, the phosphorus-terminal groups (P─C and P─O) with a P concentration of 2.71 at% are successfully tailored and interlayer spacing is enhanced during the ultraviolet light irradiation process of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene, which is the first report of photoinduced P-doped MXene modification. Density functional theory calculations show that P doping is more likely to be adsorbed by ─O groups than to replace Ti vacancy, and the stability of the MXene electrode can be improved by the introduction of a phosphorus terminal. The resulting P-doped Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene shows a significant increased pseudocapacitance performance, achieving superior results compared with traditional resistance furnace heating methods. The specific capacitance achieves 500.5 F g<sup>−1</sup>, due to the ─P functional group and Ti atom double reoxidation sites. Furthermore, a Zn-HSC device of P-doped Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> exhibits a specific capacitance of 207.4 F g<sup>−1</sup> and energy densities of 56.5 Wh kg<sup>−1</sup>. This study also provides valuable insights and a reference for the realization of phosphorus doping in other MXene materials.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240117","citationCount":"0","resultStr":"{\"title\":\"The Customization of Phosphorus Terminal for MXene Materials by Photothermal Effect Toward High-Performance Zn-Ion Hybrid Supercapacitors\",\"authors\":\"Xiaochun Wei, Yongfang Liang, Hailong Shen, Hongying Zhao, Jinyu Wu, Haifu Huang, Xianqing Liang, Wenzheng Zhou, Shuaikai Xu, Huangzhong Yu\",\"doi\":\"10.1002/bte2.20240117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>MXene materials exhibit outstanding pseudocapacitive performance, holding great potential for application in zinc-ion hybrid supercapacitors (Zn-HSCs). Exploring the effect of the surface terminal regulation on the performance of MXene is crucial yet challenging. In this study, the phosphorus-terminal groups (P─C and P─O) with a P concentration of 2.71 at% are successfully tailored and interlayer spacing is enhanced during the ultraviolet light irradiation process of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene, which is the first report of photoinduced P-doped MXene modification. Density functional theory calculations show that P doping is more likely to be adsorbed by ─O groups than to replace Ti vacancy, and the stability of the MXene electrode can be improved by the introduction of a phosphorus terminal. The resulting P-doped Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene shows a significant increased pseudocapacitance performance, achieving superior results compared with traditional resistance furnace heating methods. The specific capacitance achieves 500.5 F g<sup>−1</sup>, due to the ─P functional group and Ti atom double reoxidation sites. Furthermore, a Zn-HSC device of P-doped Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> exhibits a specific capacitance of 207.4 F g<sup>−1</sup> and energy densities of 56.5 Wh kg<sup>−1</sup>. This study also provides valuable insights and a reference for the realization of phosphorus doping in other MXene materials.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
MXene材料具有优异的赝电容性能,在锌离子混合超级电容器(zn - hsc)中具有很大的应用潜力。探索表面末端调节对MXene性能的影响至关重要,但也具有挑战性。本研究在紫外光照射Ti3C2Tx MXene的过程中,成功地裁剪出P浓度为2.71 at%的磷端基团(P─C和P─O),并增强了层间间距,这是光诱导P掺杂MXene修饰的首次报道。密度泛函理论计算表明,P掺杂更有可能被O基团吸附而不是取代Ti空位,并且引入磷末端可以提高MXene电极的稳定性。结果表明,p掺杂Ti3C2Tx MXene的赝电容性能显著提高,与传统的电阻炉加热方法相比,取得了更好的效果。由于─P官能团和Ti原子的双重再氧化,比电容达到500.5 F g−1。此外,p掺杂Ti3C2Tx的Zn-HSC器件的比电容为207.4 F g−1,能量密度为56.5 Wh kg−1。该研究也为其他MXene材料中磷掺杂的实现提供了有价值的见解和参考。
The Customization of Phosphorus Terminal for MXene Materials by Photothermal Effect Toward High-Performance Zn-Ion Hybrid Supercapacitors
MXene materials exhibit outstanding pseudocapacitive performance, holding great potential for application in zinc-ion hybrid supercapacitors (Zn-HSCs). Exploring the effect of the surface terminal regulation on the performance of MXene is crucial yet challenging. In this study, the phosphorus-terminal groups (P─C and P─O) with a P concentration of 2.71 at% are successfully tailored and interlayer spacing is enhanced during the ultraviolet light irradiation process of Ti3C2Tx MXene, which is the first report of photoinduced P-doped MXene modification. Density functional theory calculations show that P doping is more likely to be adsorbed by ─O groups than to replace Ti vacancy, and the stability of the MXene electrode can be improved by the introduction of a phosphorus terminal. The resulting P-doped Ti3C2Tx MXene shows a significant increased pseudocapacitance performance, achieving superior results compared with traditional resistance furnace heating methods. The specific capacitance achieves 500.5 F g−1, due to the ─P functional group and Ti atom double reoxidation sites. Furthermore, a Zn-HSC device of P-doped Ti3C2Tx exhibits a specific capacitance of 207.4 F g−1 and energy densities of 56.5 Wh kg−1. This study also provides valuable insights and a reference for the realization of phosphorus doping in other MXene materials.