基于ai驱动的动态负荷管理和可再生能源集成的电力系统灵活性优化

Saad Hayat, Aamir Nawaz, Aftab Ahmed Almani, Zahid Javid, William Holderbaum
{"title":"基于ai驱动的动态负荷管理和可再生能源集成的电力系统灵活性优化","authors":"Saad Hayat,&nbsp;Aamir Nawaz,&nbsp;Aftab Ahmed Almani,&nbsp;Zahid Javid,&nbsp;William Holderbaum","doi":"10.1002/bte2.20250009","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces an advanced framework to enhance power system flexibility through AI-driven dynamic load management and renewable energy integration. Leveraging a transformer-based predictive model and MATPOWER simulations on the IEEE 14-bus system, the study achieves significant improvements in system efficiency and stability. Key contributions include a 44% reduction in total power losses, enhanced voltage stability validated through the Fast Voltage Stability Index (FVSI), and optimized renewable energy utilization. Comparative analyses demonstrate the superiority of AI-based approaches over traditional models such as ARIMA, with the transformer model achieving significantly lower forecasting errors. The proposed methodology highlights the transformative potential of AI in addressing the challenges of modern power grids, paving the way for more resilient, efficient, and sustainable energy systems.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20250009","citationCount":"0","resultStr":"{\"title\":\"Optimization of Power System Flexibility Through AI-Driven Dynamic Load Management and Renewable Integration\",\"authors\":\"Saad Hayat,&nbsp;Aamir Nawaz,&nbsp;Aftab Ahmed Almani,&nbsp;Zahid Javid,&nbsp;William Holderbaum\",\"doi\":\"10.1002/bte2.20250009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces an advanced framework to enhance power system flexibility through AI-driven dynamic load management and renewable energy integration. Leveraging a transformer-based predictive model and MATPOWER simulations on the IEEE 14-bus system, the study achieves significant improvements in system efficiency and stability. Key contributions include a 44% reduction in total power losses, enhanced voltage stability validated through the Fast Voltage Stability Index (FVSI), and optimized renewable energy utilization. Comparative analyses demonstrate the superiority of AI-based approaches over traditional models such as ARIMA, with the transformer model achieving significantly lower forecasting errors. The proposed methodology highlights the transformative potential of AI in addressing the challenges of modern power grids, paving the way for more resilient, efficient, and sustainable energy systems.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20250009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20250009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20250009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种先进的框架,通过人工智能驱动的动态负荷管理和可再生能源集成来增强电力系统的灵活性。利用基于变压器的预测模型和MATPOWER在IEEE 14总线系统上的仿真,该研究显著提高了系统的效率和稳定性。主要贡献包括总功率损耗降低44%,通过快速电压稳定指数(FVSI)验证的电压稳定性增强,以及优化可再生能源利用。对比分析表明,基于人工智能的方法优于ARIMA等传统模型,变压器模型的预测误差显著降低。提出的方法强调了人工智能在应对现代电网挑战方面的变革潜力,为更有弹性、更高效和更可持续的能源系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization of Power System Flexibility Through AI-Driven Dynamic Load Management and Renewable Integration

Optimization of Power System Flexibility Through AI-Driven Dynamic Load Management and Renewable Integration

This paper introduces an advanced framework to enhance power system flexibility through AI-driven dynamic load management and renewable energy integration. Leveraging a transformer-based predictive model and MATPOWER simulations on the IEEE 14-bus system, the study achieves significant improvements in system efficiency and stability. Key contributions include a 44% reduction in total power losses, enhanced voltage stability validated through the Fast Voltage Stability Index (FVSI), and optimized renewable energy utilization. Comparative analyses demonstrate the superiority of AI-based approaches over traditional models such as ARIMA, with the transformer model achieving significantly lower forecasting errors. The proposed methodology highlights the transformative potential of AI in addressing the challenges of modern power grids, paving the way for more resilient, efficient, and sustainable energy systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信