Samantha M Smith, Elena L Garcia, Anna Montelongo, Caroline G Davidson, Denna Bakhtiar, Sarah D Lovett, Andrew P Maurer, Sara N Burke
{"title":"Muscimol inactivation of dorsal striatum in young and aged male rats does not affect paired associates learning performance.","authors":"Samantha M Smith, Elena L Garcia, Anna Montelongo, Caroline G Davidson, Denna Bakhtiar, Sarah D Lovett, Andrew P Maurer, Sara N Burke","doi":"10.1037/bne0000561","DOIUrl":"10.1037/bne0000561","url":null,"abstract":"<p><p>Improving cognitive health for older adults requires understanding the neurobiology of age-related cognitive decline and the mechanisms underlying preserved cognition in old age. During spatial learning tasks, aged humans and rodents shift navigation preferences in favor of a stimulus-response learning strategy. This has been hypothesized to result from competitive interactions of the caudate nucleus/dorsal striatum (DS) memory system with the hippocampus (HPC)-dependent spatial/allocentric memory system. In support of this hypothesis, a recent study reported that inactivation of the DS in aged rodents rescued HPC-dependent spatial learning on a T-maze (Gardner, Gold, & Korol, 2020). Currently, it is unclear whether a shift from HPC-dependent to DS-dependent behavior also contributes to age-related cognitive decline outside of spatial learning and memory. To test the hypothesis that inactivation of the DS can restore age-related cognitive function outside of spatial behavior, the present study bilaterally inactivated the DS of young (<i>n</i> = 8) and aged (<i>n</i> = 7) rats during visuospatial paired associates learning (PAL). This study found that inactivation of the DS did not alter PAL performance in young or aged rats, but did alter a positive control, DS-dependent spatial navigation task. This observation suggests that elevated DS activity does not play a role in the decline of HPC-dependent PAL performance in aged male rats. Given the persistent tendencies of aged rodents toward DS-dependent learning, it will be worthwhile to explore further the coordination dynamics between the HPC and DS that may contribute to age-related cognitive decline. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"356-363"},"PeriodicalIF":1.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10156452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Louis D Matzel, Dylan W Crawford, Julia Bond, Kelsey M McKeen, Himali M Patel, Komal R Patel, Pranu Sharma, Ashley Swiecka, Alisha Tiwari
{"title":"Negative attributes of mixed-valence memories strengthen over long retention intervals and the degree of enhancement is predicted by individual differences in state anxiety.","authors":"Louis D Matzel, Dylan W Crawford, Julia Bond, Kelsey M McKeen, Himali M Patel, Komal R Patel, Pranu Sharma, Ashley Swiecka, Alisha Tiwari","doi":"10.1037/bne0000575","DOIUrl":"10.1037/bne0000575","url":null,"abstract":"<p><p>Memories are multifaceted and can simultaneously contain positive and negative attributes. Here, we report that negative attributes of a mixed-valence memory dominate long-term recall. To induce a mixed-valence memory, running responses were randomly reinforced with either food (∼83% of trials) or footshock (∼17% of trials), or a noise conditioned stimulus (CS) was followed randomly with either food (∼80% of trials) or footshock (∼20% of trials). Control animals were consistently reinforced with only food. Mixed-valence training promoted unstable behavior (e.g., erratic approach and withdrawal from the food cup) and moderate levels of fear during the training regimens. After a 20-day retention interval, animals that were consistently reinforced with food exhibited intact approach responding, and similar responding was observed if animals were food deprived or satiated (i.e., the response was insensitive to motivation). However, animals that experienced the mixed-valence training expressed significantly enhanced and stable fear (consistent immobility) relative to the end of training, regardless of whether animals were food deprived or not, suggesting that fear transitioned to a state that was insensitive to motivation. The degree of fear expressed during long-term retention was predicted by measures of state anxiety obtained prior to the training, indicating that the enhancement of fear across the retention interval was related to individual differences in basal \"anxiety.\" These results suggest that negative attributes of memories dominate long-term recall, particularly in animals expressing an anxious phenotype, and these observations have direct implications for the chronic nature of anxiety disorders and the exacerbation of fear that accompanies posttraumatic stress disorder. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"380-391"},"PeriodicalIF":1.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristina M Wright, Shannon Cieslewski, Amanda Chu, Michael A McDannald
{"title":"Optogenetic inhibition of the caudal substantia nigra inflates behavioral responding to uncertain threat and safety.","authors":"Kristina M Wright, Shannon Cieslewski, Amanda Chu, Michael A McDannald","doi":"10.1037/bne0000568","DOIUrl":"10.1037/bne0000568","url":null,"abstract":"<p><p>Defensive responding is adaptive when it approximates the current threat but maladaptive when it exceeds the current threat. Here we asked if the substantia nigra, a region consistently implicated in reward, is necessary to show appropriate levels of defensive responding in Pavlovian fear discrimination. Rats received bilateral transduction of the caudal substantia nigra with halorhodopsin or a control fluorophore and bilateral ferrule implants. Rats then behaviorally discriminated cues predicting unique foot shock probabilities (danger, <i>p</i> = 1; uncertainty, <i>p</i> = .25; and safety, <i>p</i> = 0). Green-light illumination (532 nm) during cue presentation inflated defensive responding of halorhodopsin rats-measured by suppression of reward seeking-to uncertainty and safety beyond control levels. Green-light illumination outside of cue presentation had no impact on halorhodopsin or control rat responding. The results reveal caudal substantia nigra cue activity is necessary to inhibit defensive responding to nonthreatening and uncertain threat cues. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"347-355"},"PeriodicalIF":1.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41092472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retrieval and savings of contextual fear memories across an extended retention interval in juvenile and adult male and female rats.","authors":"Natalie Odynocki, Zerah Isaacs, Andrew M Poulos","doi":"10.1037/bne0000569","DOIUrl":"10.1037/bne0000569","url":null,"abstract":"<p><p>Adult rodents exhibit an exceptional ability to retrieve context fear memories across lengthy retention intervals. In contrast, these memories established in younger rodents are susceptible to significant forgetting. The present study aimed to examine the persistence of contextual fear memories established in juvenile and adult Long-Evans male and female rats. Testing 1-day after conditioning, adult males exhibited evidence for greater conditioning than juvenile males, while in females, conditioning did not differ between juvenile and adult rats. In adults, males displayed greater conditioning than females, while in juveniles, males and females reached similar conditioning levels. At the 60-day retention interval, adult sex differences were maintained; however, juvenile rats failed to retrieve this remote contextual fear memory. Next, we examined whether a savings test procedure could recover these remotely established juvenile memories. Following a 60-day retention test, the now adult rats were presented with an additional context-shock pairing to assess the level of savings. While this procedure produced greater conditioning in males than females, the relative savings of this early life memory were similar in males and females. The results of these experiments indicate that adult sex differences in contextual fear memory are maintained across an extended retention interval, while in juveniles, there were no significant sex differences. A novel finding in the present study was that both male and female rats failed to retrieve an initial juvenile memory following an extended retention interval. However, these memories were recovered with a single reminder of the original juvenile experience. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"339-346"},"PeriodicalIF":1.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supplemental Material for Predictions About Reward Outcomes in Rhesus Monkeys","authors":"","doi":"10.1037/bne0000573.supp","DOIUrl":"https://doi.org/10.1037/bne0000573.supp","url":null,"abstract":"","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"15 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136282693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supplemental Material for Retrieval and Savings of Contextual Fear Memories Across an Extended Retention Interval in Juvenile and Adult Male and Female Rats","authors":"","doi":"10.1037/bne0000569.supp","DOIUrl":"https://doi.org/10.1037/bne0000569.supp","url":null,"abstract":"","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"12 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136018720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supplemental Material for Optogenetic Inhibition of the Caudal Substantia Nigra Inflates Behavioral Responding to Uncertain Threat and Safety","authors":"","doi":"10.1037/bne0000568.supp","DOIUrl":"https://doi.org/10.1037/bne0000568.supp","url":null,"abstract":"","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134947190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supplemental Material for Can the Resting State Peak Alpha Frequency Explain the Relationship Between Temporal Resolution Power and Psychometric Intelligence?","authors":"","doi":"10.1037/bne0000571.supp","DOIUrl":"https://doi.org/10.1037/bne0000571.supp","url":null,"abstract":"","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134947191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Ballintyn, John Ksander, Donald B Katz, Paul Miller
{"title":"Distinct competitive impacts of palatability of taste stimuli on sampling dynamics during a preference test.","authors":"Benjamin Ballintyn, John Ksander, Donald B Katz, Paul Miller","doi":"10.1037/bne0000562","DOIUrl":"10.1037/bne0000562","url":null,"abstract":"<p><p>Food or taste preference tests are analogous to naturalistic decisions in which the animal selects which stimuli to sample and for how long to sample them. The data acquired in such tests, the relative amounts of the alternative stimuli that are sampled and consumed, indicate the preference for each. While such preferences are typically recorded as a single quantity, an analysis of the ongoing sampling dynamics producing the preference can reveal otherwise hidden aspects of the decision-making process that depend on its underlying neural circuit mechanisms. Here, we perform a dynamic analysis of two factors that give rise to preferences in a two-alternative task, namely the distribution of durations of sampling bouts of each stimulus and the likelihood of returning to the same stimulus or switching to the alternative-that is, the transition probability-following each bout. The results of our analysis support a specific computational model of decision making whereby an exponential distribution of bout durations has a mean that is positively correlated with the palatability of that stimulus but also negatively correlated with the palatability of the alternative. This impact of the alternative stimulus on the distribution of bout durations decays over a timescale of tens of seconds, even though the memory of the alternative stimulus lasts far longer-long enough to impact the transition probabilities upon ending bouts. Together, our findings support a state transition model for bout durations and suggest a separate memory mechanism for stimulus selection. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"137 5","pages":"289-302"},"PeriodicalIF":1.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10124839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristen N Buford, Carly R Snidow, Tasha G Curiel, Heather E Dark, Juliann B Purcell, Devon K Grey, Sylvie Mrug, David C Knight
{"title":"Hippocampal and amygdala volumes vary with residential proximity to toxicants at Birmingham, Alabama's 35th Avenue Superfund site.","authors":"Kristen N Buford, Carly R Snidow, Tasha G Curiel, Heather E Dark, Juliann B Purcell, Devon K Grey, Sylvie Mrug, David C Knight","doi":"10.1037/bne0000564","DOIUrl":"10.1037/bne0000564","url":null,"abstract":"<p><p>Exposure to environmental toxicants have serious implications for the general health and well-being of children, particularly during pivotal neurodevelopmental stages. The Environmental Protection Agency's (EPA) Superfund program has identified several areas (Superfund sites) across the United States with high levels of environmental toxicants, which affect the health of many residents in nearby communities. Exposure to these environmental toxicants has been linked to changes in the structure and function of the brain. However, limited research has investigated the relationship between the proximity of childhood homes to a Superfund site and the development of subcortical structures like the hippocampus and amygdala. The present study investigated the hippocampal and amygdala volumes of young adults in relation to the proximity of their childhood homes to Birmingham, Alabama's 35th Avenue Superfund site. Forty participants who either lived within or adjacent to the Superfund site (Proximal group; <i>n</i> = 20) or who lived elsewhere in the greater Birmingham metropolitan area (Distal group; <i>n</i> = 20) were included in this study. Both groups were matched on age, sex, race, and years of education. Magnetic resonance imaging (MRI) was used to compare the gray matter volume of the hippocampus and amygdala between groups. Differences in bilateral hippocampal and left amygdala volumes were observed. Specifically, hippocampal and amygdala volumes were greater in the Proximal than Distal group. These findings suggest that the proximity of children's homes to environmental toxicants may impact the development of the hippocampus and amygdala. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"137 5","pages":"330-338"},"PeriodicalIF":1.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10480780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}