Behavioral neuroscience最新文献

筛选
英文 中文
Behavioral and neurochemical effects of nociceptin/orphanin FQ receptor activation in the social defeat protocol. 社交失败方案中伤害肽/孤啡肽FQ受体激活的行为和神经化学效应。
IF 1.9 4区 医学
Behavioral neuroscience Pub Date : 2022-10-24 DOI: 10.1037/bne0000539.supp
Alice Barros Câmara, Igor Augusto Brandão
{"title":"Behavioral and neurochemical effects of nociceptin/orphanin FQ receptor activation in the social defeat protocol.","authors":"Alice Barros Câmara, Igor Augusto Brandão","doi":"10.1037/bne0000539.supp","DOIUrl":"https://doi.org/10.1037/bne0000539.supp","url":null,"abstract":"The nociceptin/orphanin FQ receptor (NOP receptor) has wide expression in the nervous system and is involved in neurotransmitter release. However, the role of the NOPR in depression is not widely recognized. This study aims to evaluate behavioral and biochemical effects of the NOPR agonist Ro 65-6570 in mice submitted to social defeat protocol. The open-field test, social interaction test, and tail suspension test were applied to evaluate depressive behavior in male Swiss mice. Blood and brain tissue samples were obtained to evaluate the oxidative stress. The NOP agonist, Ro 65-6570 (1 mg/kg), or the social defeat stress reduced exploration rate in the open-field test. The social defeat stress and/or the NOP agonist also increased immobility time in the tail suspension test and the grooming time, as well as reduced the social interaction on the last day of social defeat protocol. Seven days after the end of the protocol, only the drug alone was able to affect the animals' interaction. Additionally, the NOP agonist increased the concentration of carbonyl groups (CGs) in hippocampus and malondialdehyde in serum. The stress of social defeat and the NOP agonist, together, increased malondialdehyde in animals' serum and prefrontal cortex, as well as increased the CGs concentration in the prefrontal cortex. These findings indicate a chronic depressive effect induced by the NOPR activation, sometimes regardless of the social defeat stress. We suggest that the NOPR signaling can activate pathways involved in cellular oxidative stress, contributing to the depression pathology. (PsycInfo Database Record (c) 2022 APA, all rights reserved).","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48465774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sex and estrous cycle in memory for sequences of events in rats. 大鼠记忆中事件序列的性周期和发情周期。
IF 1.9 4区 医学
Behavioral neuroscience Pub Date : 2022-10-01 Epub Date: 2022-03-07 DOI: 10.1037/bne0000508
M Jayachandran, P Langius, F Pazos Rego, R P Vertes, T A Allen
{"title":"Sex and estrous cycle in memory for sequences of events in rats.","authors":"M Jayachandran,&nbsp;P Langius,&nbsp;F Pazos Rego,&nbsp;R P Vertes,&nbsp;T A Allen","doi":"10.1037/bne0000508","DOIUrl":"10.1037/bne0000508","url":null,"abstract":"<p><p>The ability to remember sequences of events is fundamental to episodic memory. While rodent studies have examined sex and estrous cycle in episodic-like spatial memory tasks, little is known about these biological variables in memory for sequences of events that depend on representations of temporal context. We investigated the role of sex and estrous cycle in rats during training and testing stages of a cross-species validated sequence memory task (Jayachandran et al., 2019). Rats were trained on a two four-odor sequence memory task delivered on opposite ends of a linear track. Training occurred in six successive stages starting with learning to poke in a nose-port for ≥ 1.2 s; eventually demonstrating sequence memory by holding their nose in the port ≥ 1 s for in-sequence odors and < 1 s for out-of-sequence odors. Performance was analyzed across sex and estrous cycle (proestrus, estrus, metestrus, and diestrus), the latter being determined by cellular composition of a daily vaginal lavage. We found no evidence of sex differences in asymptotic sequence memory performance, similar to humans performing an analogous task (Reeders et al., 2021). Likewise, no differences in sequence memory performance were found across the estrous cycle. Some caveats are that males acquired out-of-sequence trials faster during training with a 3-odor sequence, but this apparent advantage did not carry over to the 4-odor sequence. Additionally, males had shorter poke times overall which seem consistent with a decreased overall response inhibition because they occurred regardless of sequence demands. Together, these results suggest sex and estrous cycle are not major factors in sequence memory capacities. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448822/pdf/nihms-1825637.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9497883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Pupillometry tracks errors in interval timing. 瞳孔测量法跟踪间隔计时的误差。
IF 1.9 4区 医学
Behavioral neuroscience Pub Date : 2022-10-01 DOI: 10.1037/bne0000533
Shamini Warda, Jaana Simola, Devin B Terhune
{"title":"Pupillometry tracks errors in interval timing.","authors":"Shamini Warda,&nbsp;Jaana Simola,&nbsp;Devin B Terhune","doi":"10.1037/bne0000533","DOIUrl":"https://doi.org/10.1037/bne0000533","url":null,"abstract":"<p><p>Recent primate studies suggest a potential link between pupil size and subjectively elapsed duration. Here, we sought to investigate the relationship between pupil size and perceived duration in human participants performing two temporal bisection tasks in the subsecond and suprasecond interval ranges. In the subsecond task, pupil diameter was greater during stimulus processing when shorter intervals were overestimated but also during and after stimulus offset when longer intervals were underestimated. By contrast, in the suprasecond task, larger pupil diameter was observed only in the late stimulus offset phase prior to response prompts when longer intervals were underestimated. This pattern of results suggests that pupil diameter relates to an error monitoring mechanism in interval timing. These results are at odds with a direct relationship between pupil size and the perception of duration but suggest that pupillometric variation might play a key role in signifying errors related to temporal judgments. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33502445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Event-related brain potentials of temporal generalization: The P300 span marks the transition between time perception and time estimation. 时间概化的事件相关脑电位:P300跨度标志着时间感知和时间估计的过渡。
IF 1.9 4区 医学
Behavioral neuroscience Pub Date : 2022-10-01 Epub Date: 2022-07-14 DOI: 10.1037/bne0000530
Henning Gibbons
{"title":"Event-related brain potentials of temporal generalization: The P300 span marks the transition between time perception and time estimation.","authors":"Henning Gibbons","doi":"10.1037/bne0000530","DOIUrl":"https://doi.org/10.1037/bne0000530","url":null,"abstract":"<p><p>There has been a long-standing debate on where on the time axis the transition between time perception and time estimation (i.e., the cognitive reconstruction of time) can be located. According to Fraisse (1984), time perception applies to intervals < 300 ms, whereas intervals > 1 s are subject to time estimation. While there is good empirical evidence for this notion, it might be possible to further pinpoint the threshold. In two experiments, an auditory temporal generalization (TG) task in the range of 400 ms was used to compare event-related potentials (ERPs) with findings from an analogous task using standard durations in the range of 200 ms. As an ERP correlate of actively processed durations around 400 ms, offset latency of a medial central/centroparietal contingent negative variation (CNV) was identified. Thus, durations of around 400 ms may be coded as the duration of mental processes and, hence, are cognitively reconstructed (time estimation). This contrasts with again replicated ERP correlates of TG in the 200-ms range, which involve amplitude modulations of stationary P300/P500 components and suggest an immediate evaluation of durations around 200 ms. It is concluded that the P300 span may denote the transition between time perception and time estimation. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40592778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
mPFC catecholamines modulate attentional capture by appetitive distracters and attention to time in a peak-interval procedure in rats. mPFC儿茶酚胺通过食欲干扰物调节大鼠的注意力捕获,并在峰值间隔过程中调节对时间的注意力。
IF 1.9 4区 医学
Behavioral neuroscience Pub Date : 2022-10-01 Epub Date: 2022-07-14 DOI: 10.1037/bne0000528
Catalin V Buhusi, Alexander R Matthews, Mona Buhusi
{"title":"mPFC catecholamines modulate attentional capture by appetitive distracters and attention to time in a peak-interval procedure in rats.","authors":"Catalin V Buhusi,&nbsp;Alexander R Matthews,&nbsp;Mona Buhusi","doi":"10.1037/bne0000528","DOIUrl":"10.1037/bne0000528","url":null,"abstract":"<p><p>The behavioral and neural mechanisms by which distracters delay interval timing behavior are currently unclear. Distracters delay timing in a considerable dynamic range: Some distracters have no effect on timing (\"run\"), whereas others seem to \"stop\" timing; some distracters restart (\"reset\") the entire timing mechanisms at their offset, whereas others seem to capture attentional resources long after their termination (\"over-reset\"). While the run-reset range of delays is accounted for by the <i>Time-Sharing Hypothesis</i> (Buhusi, 2003, 2012), the behavioral and neural mechanisms of \"over-resetting\" are currently uncertain. We investigated the role of novelty (novel/familiar) and significance (consequential/inconsequential) in the time-delaying effect of distracters and the role of medial prefrontal cortex (mPFC) catecholamines by local infusion of norepinephrine-dopamine reuptake inhibitor (NDRI) nomifensine in a peak-interval (PI) procedure in rats. Results indicate differences in time delay between groups, suggesting a role for both novelty and significance: inconsequential, familiar distracters \"stopped\" timing, novel distracters \"reset\" timing, whereas appetitively conditioned distracters \"over-reset\" timing. mPFC infusion of nomifensine modulated attentional capture by appetitive distracters in a \"U\"-shaped fashion, reduced the delay after novel distracters, but had no effects after inconsequential, familiar distracters. These results were not due to nomifensine affecting either timing accuracy, precision, or peak response rate. Results may help elucidate the behavioral and physiological mechanisms underlying interval timing and attention to time and may contribute to developing new treatment strategies for disorders of attention. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617693/pdf/nihms-1844867.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40592780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A limited cerebellar contribution to suprasecond timing across differing task demands. 小脑对跨不同任务要求的超秒计时的有限贡献。
IF 1.9 4区 医学
Behavioral neuroscience Pub Date : 2022-10-01 DOI: 10.1037/bne0000531
Kelsey A Heslin, Jessica R Purnell, Benjamin J De Corte, Krystal L Parker
{"title":"A limited cerebellar contribution to suprasecond timing across differing task demands.","authors":"Kelsey A Heslin,&nbsp;Jessica R Purnell,&nbsp;Benjamin J De Corte,&nbsp;Krystal L Parker","doi":"10.1037/bne0000531","DOIUrl":"https://doi.org/10.1037/bne0000531","url":null,"abstract":"<p><p>The involvement of the cerebellum in suprasecond interval timing (i.e., timing in the seconds to minutes range) is controversial. A limited amount of evidence from humans, nonhuman primates, and rodents has shown that the lateral cerebellum, including the lateral cerebellar nucleus (LCN), may be necessary for successful suprasecond timing performance. However, many existing studies have pitfalls, such as limited timing outcome measures and confounded task demands. In addition, many existing studies relied on well-trained subjects. This approach may be a drawback, as the cerebellum is hypothesized to carry out ongoing error correction to limit timing variability. By using only experienced subjects, past timing studies may have missed a critical window of cerebellar involvement. In the experiments described here, we pharmacologically inactivated the rat LCN across three different peak interval timing tasks. We structured our tasks to address past confounds, collect timing variability measures, and characterize performance during target duration acquisition. Across these various tasks, we did not find strong support for cerebellar involvement in suprasecond interval timing. Our findings support the existing distinction of the cerebellum as a subsecond interval timing brain region. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10538789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The temporal context in bayesian models of interval timing: Recent advances and future directions. 贝叶斯时间间隔模型中的时间背景:最新进展与未来方向。
IF 1.6 4区 医学
Behavioral neuroscience Pub Date : 2022-10-01 Epub Date: 2022-06-23 DOI: 10.1037/bne0000513
Renata Sadibolova, Devin B Terhune
{"title":"The temporal context in bayesian models of interval timing: Recent advances and future directions.","authors":"Renata Sadibolova, Devin B Terhune","doi":"10.1037/bne0000513","DOIUrl":"10.1037/bne0000513","url":null,"abstract":"<p><p>Sensory perception, motor control, and cognition necessitate reliable timing in the range of milliseconds to seconds, which implies the existence of a highly accurate timing system. Yet, partly owing to the fact that temporal processing is modulated by contextual factors, perceived time is not isomorphic to physical time. Temporal estimates exhibit regression to the mean of an interval distribution (<i>global context</i>) and are also affected by preceding trials (<i>local context</i>). Recent Bayesian models of interval timing have provided important insights regarding these observations, but questions remain as to how exposure to past intervals shapes perceived time. In this article, we provide a brief overview of Bayesian models of interval timing and their contribution to current understanding of context effects. We then proceed to highlight recent developments in the field concerning precision weighting of Bayesian evidence in both healthy timing and disease and the neurophysiological and neurochemical signatures of timing prediction errors. We further aim to bring attention to current outstanding questions for Bayesian models of interval timing, such as the likelihood conceptualization. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40290760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timing, neural timescales, and temporal cognition. 时间,神经时间标度,和时间认知。
IF 1.9 4区 医学
Behavioral neuroscience Pub Date : 2022-10-01 DOI: 10.1037/bne0000538
Federico Sanabria, Angela Langdon, Alicia Izquierdo
{"title":"Timing, neural timescales, and temporal cognition.","authors":"Federico Sanabria,&nbsp;Angela Langdon,&nbsp;Alicia Izquierdo","doi":"10.1037/bne0000538","DOIUrl":"https://doi.org/10.1037/bne0000538","url":null,"abstract":"<p><p>This special issue provides a representative snapshot of cutting-edge behavioral neuroscience research on sense of time, cognitive and behavioral functioning, and neural processes. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33502967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dopamine mediates the bidirectional update of interval timing. 多巴胺介导间隔时间的双向更新。
IF 1.6 4区 医学
Behavioral neuroscience Pub Date : 2022-10-01 DOI: 10.1037/bne0000529
Anthony M V Jakob, John G Mikhael, Allison E Hamilos, John A Assad, Samuel J Gershman
{"title":"Dopamine mediates the bidirectional update of interval timing.","authors":"Anthony M V Jakob, John G Mikhael, Allison E Hamilos, John A Assad, Samuel J Gershman","doi":"10.1037/bne0000529","DOIUrl":"10.1037/bne0000529","url":null,"abstract":"<p><p>The role of dopamine (DA) as a reward prediction error (RPE) signal in reinforcement learning (RL) tasks has been well-established over the past decades. Recent work has shown that the RPE interpretation can also account for the effects of DA on interval timing by controlling the speed of subjective time. According to this theory, the timing of the dopamine signal relative to reward delivery dictates whether subjective time speeds up or slows down: Early DA signals speed up subjective time and late signals slow it down. To test this bidirectional prediction, we reanalyzed measurements of dopaminergic neurons in the substantia nigra pars compacta of mice performing a self-timed movement task. Using the slope of ramping dopamine activity as a readout of subjective time speed, we found that trial-by-trial changes in the slope could be predicted from the timing of dopamine activity on the previous trial. This result provides a key piece of evidence supporting a unified computational theory of RL and interval timing. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9725808/pdf/nihms-1851630.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33502968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How do real animals account for the passage of time during associative learning? 在联想学习过程中,真实的动物是如何解释时间的流逝的?
IF 1.6 4区 医学
Behavioral neuroscience Pub Date : 2022-10-01 Epub Date: 2022-04-28 DOI: 10.1037/bne0000516
Vijay Mohan K Namboodiri
{"title":"How do real animals account for the passage of time during associative learning?","authors":"Vijay Mohan K Namboodiri","doi":"10.1037/bne0000516","DOIUrl":"10.1037/bne0000516","url":null,"abstract":"<p><p>Animals routinely learn to associate environmental stimuli and self-generated actions with their outcomes such as rewards. One of the most popular theoretical models of such learning is the reinforcement learning (RL) framework. The simplest form of RL, model-free RL, is widely applied to explain animal behavior in numerous neuroscientific studies. More complex RL versions assume that animals build and store an explicit model of the world in memory. To apply these approaches to explain animal behavior, typical neuroscientific RL models make implicit assumptions about how real animals represent the passage of time. In this perspective, I explicitly list these assumptions and show that they have several problematic implications. I hope that the explicit discussion of these problems encourages the field to seriously examine the assumptions underlying timing and reinforcement learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561011/pdf/nihms-1825994.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41101858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信