Organization of spontaneous spatial behaviors under dark conditions is unaffected in adult male and female long-Evans rats after moderate prenatal alcohol exposure.
Ericka A Schaeffer, Ariyana LaCour, Tia N Donaldson, David N Linsenbardt, Suzy Davies, Daniel D Savage, Douglas G Wallace, Benjamin J Clark
{"title":"Organization of spontaneous spatial behaviors under dark conditions is unaffected in adult male and female long-Evans rats after moderate prenatal alcohol exposure.","authors":"Ericka A Schaeffer, Ariyana LaCour, Tia N Donaldson, David N Linsenbardt, Suzy Davies, Daniel D Savage, Douglas G Wallace, Benjamin J Clark","doi":"10.1037/bne0000589","DOIUrl":null,"url":null,"abstract":"Prenatal alcohol exposure can produce disruptions in a wide range of cognitive functions, but it is especially detrimental to spatial navigation. In open environments, rodents organize their spatial behaviors around centralized locations, termed home bases, from which they make circuitous and slow locomotor trips (progressions) into the rest of the environment. Open-field behaviors are organized even under darkened test conditions, suggesting a role for self-motion cues (vestibular, motor, etc.). The impact of moderate prenatal alcohol exposure (mPAE) on the organization of spontaneous open-field behaviors under darkened conditions has not been investigated. Here we tested adult female and male rats with mPAE or saccharin control exposure in a circular open field for 30 min in a testing room that was made completely dark. While general locomotion, as measured by reductions in travel distance and increased stop duration, decreased across the test session, the organization of these behaviors, as measured by stop duration, home base establishment, home base stability, progression accuracy, and scaling of peak speeds with progression length, did not differ between mPAE and saccharin control rats. Together, the findings strongly suggest that spontaneous movement organization in relation to self-motion cues remains intact in adult mPAE rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"164 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1037/bne0000589","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Prenatal alcohol exposure can produce disruptions in a wide range of cognitive functions, but it is especially detrimental to spatial navigation. In open environments, rodents organize their spatial behaviors around centralized locations, termed home bases, from which they make circuitous and slow locomotor trips (progressions) into the rest of the environment. Open-field behaviors are organized even under darkened test conditions, suggesting a role for self-motion cues (vestibular, motor, etc.). The impact of moderate prenatal alcohol exposure (mPAE) on the organization of spontaneous open-field behaviors under darkened conditions has not been investigated. Here we tested adult female and male rats with mPAE or saccharin control exposure in a circular open field for 30 min in a testing room that was made completely dark. While general locomotion, as measured by reductions in travel distance and increased stop duration, decreased across the test session, the organization of these behaviors, as measured by stop duration, home base establishment, home base stability, progression accuracy, and scaling of peak speeds with progression length, did not differ between mPAE and saccharin control rats. Together, the findings strongly suggest that spontaneous movement organization in relation to self-motion cues remains intact in adult mPAE rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).