Ngoc My Tieu Le, Kum-Kang So, Jeesun Chun, Dae-Hyuk Kim
{"title":"Expression of virus-like particles (VLPs) of foot-and-mouth disease virus (FMDV) using Saccharomyces cerevisiae.","authors":"Ngoc My Tieu Le, Kum-Kang So, Jeesun Chun, Dae-Hyuk Kim","doi":"10.1007/s00253-023-12902-9","DOIUrl":"10.1007/s00253-023-12902-9","url":null,"abstract":"<p><p>We engineered Saccharomyces cerevisiae to express structural proteins of foot-and-mouth disease virus (FMDV) and produce virus-like particles (VLPs). The gene, which encodes four structural capsid proteins (VP0 (VP4 and VP2), VP3, and VP1), followed by a translational \"ribosomal skipping\" sequence consisting of 2A and protease 3C, was codon-optimized and chemically synthesized. The cloned gene was used to transform S. cerevisiae 2805 strain. Western blot analysis revealed that the polyprotein consisting of VP0, VP3, and VP1 was processed into the discrete capsid proteins. Western blot analysis of 3C confirmed the presence of discrete 3C protein, suggesting that the 2A sequence functioned as a \"ribosomal skipping\" signal in the yeast for an internal re-initiation of 3C translation from a monocistronic transcript, thereby indicating polyprotein processing by the discrete 3C protease. Moreover, a band corresponding to only VP2, which was known to be non-enzymatically processed from VP0 to both VP4 and VP2 during viral assembly, further validated the assembly of processed capsid proteins into VLPs. Electron microscopy showed the presence of the characteristic icosahedral VLPs. Our results clearly demonstrate that S. cerevisiae processes the viral structural polyprotein using a viral 3C protease and the resulting viral capsid subunits are assembled into virion particles. KEY POINTS: • Ribosomal skipping by self-cleaving FMDV peptide in S. cerevisiae. • Proteolytic processing of a structural polyprotein from a monocistronic transcript. • Assembly of the processed viral capsid proteins into a virus-like particle.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"81"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139401544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of acidic stress-responsive genes and acid tolerance engineering in Synechococcus elongatus PCC 7942.","authors":"Jie Zhang, Tao Sun, Weiwen Zhang, Lei Chen","doi":"10.1007/s00253-023-12984-5","DOIUrl":"10.1007/s00253-023-12984-5","url":null,"abstract":"<p><p>Cyanobacteria are excellent autotrophic photosynthetic chassis employed in synthetic biology, and previous studies have suggested that they have alkaline tolerance but low acid tolerance, significantly limiting their productivity as photosynthetic chassis and necessitating investigations into the acid stress resistance mechanism. In this study, differentially expressed genes were obtained by RNA sequencing-based comparative transcriptomic analysis under long-term acidic stress conditions and acidic shock treatment, in the model cyanobacterium Synechococcus elongatus PCC 7942. A pathway enrichment analysis revealed the upregulated and downregulated pathways during long-term acidic and shock stress treatment. The subsequent single gene knockout and phenotype analysis showed that under acidic stress conditions, the strains with chlL, chlN, pex, synpcc7942_2038, synpcc7942_1890, or synpcc7942_2547 knocked out grew worse than the wild type, suggesting their involvement in acid tolerance. This finding was further confirmed by introducing the corresponding genes back into the knockout mutant individually. Moreover, individual overexpression of the chlL and chlN genes in the wild type successfully improved the tolerance of S. elongatus PCC 7942 to acidic stress. This work successfully identified six genes involved in acidic stress responses, and overexpressing chIL or chIN individually successfully improved acid tolerance in S. elongatus PCC 7942, providing valuable information to better understand the acid resistance mechanism in S. elongatus PCC 7942 and novel insights into the robustness and tolerance engineering of cyanobacterial chassis. KEY POINTS: • DEGs were identified by RNA-seq based transcriptomics analysis in response to acidic stress in S. elongatus PCC 7942. • Six genes were identified to be involved in acid tolerance in S. elongatus PCC 7942. • Overexpression of chIL or chIN individually successfully improved the acid tolerance of S. elongatus PCC 7942.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"115"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seo-Young Park, Jinsung Song, Dong-Hyuk Choi, Uiseon Park, Hyeran Cho, Bee Hak Hong, Yaron R Silberberg, Dong-Yup Lee
{"title":"Exploring metabolic effects of dipeptide feed media on CHO cell cultures by in silico model-guided flux analysis.","authors":"Seo-Young Park, Jinsung Song, Dong-Hyuk Choi, Uiseon Park, Hyeran Cho, Bee Hak Hong, Yaron R Silberberg, Dong-Yup Lee","doi":"10.1007/s00253-023-12997-0","DOIUrl":"10.1007/s00253-023-12997-0","url":null,"abstract":"<p><p>There is a growing interest in perfusion or continuous processes to achieve higher productivity of biopharmaceuticals in mammalian cell culture, specifically Chinese hamster ovary (CHO) cells, towards advanced biomanufacturing. These intensified bioprocesses highly require concentrated feed media in order to counteract their dilution effects. However, designing such condensed media formulation poses several challenges, particularly regarding the stability and solubility of specific amino acids. To address the difficulty and complexity in relevant media development, the biopharmaceutical industry has recently suggested forming dipeptides by combining one from problematic amino acids with selected pairs to compensate for limitations. In this study, we combined one of the lead amino acids, L-tyrosine, which is known for its poor solubility in water due to its aromatic ring and hydroxyl group, with glycine as the partner, thus forming glycyl-L-tyrosine (GY) dipeptide. Subsequently, we investigated the utilization of GY dipeptide during fed-batch cultures of IgG-producing CHO cells, by changing its concentrations (0.125 × , 0.25 × , 0.5 × , 1.0 × , and 2.0 ×). Multivariate statistical analysis of culture profiles was then conducted to identify and correlate the most significant nutrients with the production, followed by in silico model-guided analysis to systematically evaluate their effects on the culture performance, and elucidate metabolic states and cellular behaviors. As such, it allowed us to explain how the cells can more efficiently utilize GY dipeptide with respect to the balance of cofactor regeneration and energy distribution for the required biomass and protein synthesis. For example, our analysis results uncovered specific amino acids (Asn and Gln) and the 0.5 × GY dipeptide in the feed medium synergistically alleviated the metabolic bottleneck, resulting in enhanced IgG titer and productivity. In the validation experiments, we tested and observed that lower levels of Asn and Gln led to decreased secretion of toxic metabolites, enhanced longevity, and elevated specific cell growth and titer. KEY POINTS: • Explored the optimal Tyr dipeptide for the enhanced CHO cell culture performance • Systematically analyzed effects of dipeptide media by model-guided approach • Uncovered synergistic metabolic utilization of amino acids with dipeptide.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"123"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polina Drozdova, Anton Gurkov, Alexandra Saranchina, Anastasia Vlasevskaya, Elena Zolotovskaya, Elizaveta Indosova, Maxim Timofeyev, Ekaterina Borvinskaya
{"title":"Transcriptional response of Saccharomyces cerevisiae to lactic acid enantiomers.","authors":"Polina Drozdova, Anton Gurkov, Alexandra Saranchina, Anastasia Vlasevskaya, Elena Zolotovskaya, Elizaveta Indosova, Maxim Timofeyev, Ekaterina Borvinskaya","doi":"10.1007/s00253-023-12863-z","DOIUrl":"10.1007/s00253-023-12863-z","url":null,"abstract":"<p><p>The model yeast, Saccharomyces cerevisiae, is a popular object for both fundamental and applied research, including the development of biosensors and industrial production of pharmaceutical compounds. However, despite multiple studies exploring S. cerevisiae transcriptional response to various substances, this response is unknown for some substances produced in yeast, such as D-lactic acid (DLA). Here, we explore the transcriptional response of the BY4742 strain to a wide range of DLA concentrations (from 0.05 to 45 mM), and compare it to the response to 45 mM L-lactic acid (LLA). We recorded a response to 5 and 45 mM DLA (125 and 113 differentially expressed genes (DEGs), respectively; > 50% shared) and a less pronounced response to 45 mM LLA (63 DEGs; > 30% shared with at least one DLA treatment). Our data did not reveal natural yeast promoters quantitatively sensing DLA but provide the first description of the transcriptome-wide response to DLA and enrich our understanding of the LLA response. Some DLA-activated genes were indeed related to lactate metabolism, as well as iron uptake and cell wall structure. Additional analyses showed that at least some of these genes were activated only by acidic form of DLA but not its salt, revealing the role of pH. The list of LLA-responsive genes was similar to those published previously and also included iron uptake and cell wall genes, as well as genes responding to other weak acids. These data might be instrumental for optimization of lactate production in yeast and yeast co-cultivation with lactic acid bacteria. KEY POINTS: • We present the first dataset on yeast transcriptional response to DLA. • Differential gene expression was correlated with yeast growth inhibition. • The transcriptome response to DLA was richer in comparison to LLA.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"121"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787881/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Wang, Hui Li, ZhiWei Liu, ZhenYu Zhu, YingYing Cao
{"title":"Activity of thonningianin A against Candida albicans in vitro and in vivo.","authors":"Hui Wang, Hui Li, ZhiWei Liu, ZhenYu Zhu, YingYing Cao","doi":"10.1007/s00253-023-12996-1","DOIUrl":"10.1007/s00253-023-12996-1","url":null,"abstract":"<p><p>Fungal infections are increasing rapidly, and antifungal agents used in clinics are limited. Therefore, novel antifungal agents with high efficiency are urgently required. In this study, we investigated the antifungal activity of thonningianin A (THA), a natural compound that is widely found in plants. We first determined the activity of THA against Candida albicans, one of the most common fungal pathogens, and found that THA showed antifungal activity against all C. albicans tested, including several fluconazole-resistant isolates. THA also inhibits the growth of non-Candida albicans species. In addition, THA displayed antibiofilm activity and could not only inhibit biofilm formation but also destroy mature biofilms. The in vivo antifungal efficacy of THA was confirmed in a Galleria mellonella infection model. Further studies revealed that THA could enhance intracellular reactive oxygen species (ROS) production and regulate the transcription of several redox-related genes. Specifically, caspase activity and expression of CaMCA1, a caspase-encoding gene in C. albicans, were remarkably increased upon THA treatment. Consistent with this, in the presence of THA, the Camca1 null mutant displayed higher survival rates and reduced caspase activity compared to the wild-type or CaMCA1-reintroduced strains, indicating an important role of CaMCA1 in the antifungal activity of THA. Taken together, our results indicate that THA possesses excellent antifungal activity and may be a promising novel antifungal candidate. KEY POINTS: • THA exhibits activity against Candida species, including fluconazole-resistant isolates • THA inhibits biofilm formation and destroys mature biofilm • Elevated ROS production and CaMCA1-mediated caspase activity are involved in the antifungal mechanisms of THA.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"96"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139429051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monika Sikora, Sławomir Wąsik, Jacek Semaniak, Zuzanna Drulis-Kawa, Maria Wiśniewska-Wrona, Michał Arabski
{"title":"Chitosan-based matrix as a carrier for bacteriophages.","authors":"Monika Sikora, Sławomir Wąsik, Jacek Semaniak, Zuzanna Drulis-Kawa, Maria Wiśniewska-Wrona, Michał Arabski","doi":"10.1007/s00253-023-12838-0","DOIUrl":"10.1007/s00253-023-12838-0","url":null,"abstract":"<p><p>Wound healing is a dynamic and complex process where infection prevention is essential. Chitosan, thanks to its bactericidal activity against gram-positive and gram-negative bacteria, as well as anti-inflammatory and hemostatic properties, is an excellent candidate to design dressings for difficult-to-heal wound treatment. The great advantage of this biopolymer is its capacity to be chemically modified, which allows for the production of various functional forms, depending on the needs and subsequent use. Moreover, chitosan can be an excellent polymer matrix for bacteriophage (phage) packing as a novel alternative/supportive antibacterial therapy approach. This study is focused on the preparation and characteristics of chitosan-based material in the form of a film with the addition of Pseudomonas lytic phages (KTN4, KT28, and LUZ19), which would exhibit antibacterial activity as a potential dressing that accelerates the wound healing. We investigated the method of producing a polymer based on microcrystalline chitosan (MKCh) to serve as the matrix for phage deposition. We described some important parameters such as average molar mass, swelling capacity, surface morphology, phage release profile, and antibacterial activity tested in the Pseudomonas aeruginosa bacterial model. The chitosan polysaccharide turned out to interact with phage particles immobilizing them within a material matrix. Nevertheless, with the high hydrophilicity and swelling features of the prepared material, the external solution of bacterial culture was absorbed and phages went in direct contact with bacteria causing their lysis in the polymer matrix. KEY POINTS: • A novel chitosan-based matrix with the addition of active phages was prepared • Phage interactions with the chitosan matrix were determined as electrostatic • Phages in the matrix work through direct contact with the bacterial cells.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"6"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaomei Li, Shan Yang, Jiaxue Zhang, Lan Xiao, Xiangchi Feng, Haobin Huang, Yang Xing
{"title":"Intestinal microbial community well explain larval growth than feed types.","authors":"Xiaomei Li, Shan Yang, Jiaxue Zhang, Lan Xiao, Xiangchi Feng, Haobin Huang, Yang Xing","doi":"10.1007/s00253-023-12857-x","DOIUrl":"10.1007/s00253-023-12857-x","url":null,"abstract":"<p><p>Black soldier fly larvae (BSFL) are considered a sustainable ingredient in livestock feed. However, addressing issues related to feed substrate and intestinal microbiota is essential to ensure optimal larval development. The aim of this study was to assess and elucidate the contribution of substrate nutrients and intestinal microbes to protein and fat synthesis in BSFL. The results showed that larvae that were fed high-quality feed (chicken feed) had high fat biomass, while larvae that were fed medium-quality feed (wheat bran) had high protein biomass. These results indicate that the original nutritional content of the feed cannot fully explain larval growth and nutrient utilization. However, the phenomenon could be explained by the functional metabolism of intestinal microbes. Chicken feed enhanced the fatty acid metabolism of middle intestine microorganisms in larvae within 0-7 days. This process facilitated larval fat synthesis. In contrast, wheat bran stimulated the amino acid metabolism in posterior intestine microorganisms in larvae within 4-7 days, leading to better protein synthesis. The findings of this study highlight the importance of the microbial functional potential in the intestine in regulating protein and lipid synthesis in BSFL, which is also influenced by the type of feed. In conclusion, our study suggests that both feed type and intestinal microbes play a crucial role in efficiently converting organic waste into high-quality insect protein and fat. Additionally, a mixed culture of chicken feed and wheat bran was found to be effective in promoting larval biomass while reducing feed costs. KEY POINTS: • Intestinal microbes explain BSFL growth better than feed substrates. • Chicken feed promotes fatty acid synthesis in the middle intestine • Wheat bran promotes amino acid synthesis in the posterior intestine.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"32"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongyan Zhang, Haifeng Ji, Sixin Wang, Meixia Chen, Hui Liu
{"title":"Parity changed fecal microbiota of sows and its correlation with milk long-chain fatty acid profiles.","authors":"Dongyan Zhang, Haifeng Ji, Sixin Wang, Meixia Chen, Hui Liu","doi":"10.1007/s00253-023-12852-2","DOIUrl":"10.1007/s00253-023-12852-2","url":null,"abstract":"<p><p>The goal of this study was to characterize the fecal microbiota profiles of gestating sows, along with the fecal microbiota and milk fatty acid contents of lactating sows and their correlations with reproductive performance at different parities. The results showed that the microbiota of third parity gestating sows contained a greater abundance of Prevotella compared to the other two parity groups, while lactating sows exhibiting higher reproductive performance at fifth parity exhibited a greater abundance of Lactobacillus species. The lactating sows with higher reproductive performance also exhibited higher total monounsaturated fatty acid (MUFA) and higher total polyunsaturated fatty acid (PUFA) levels relative to sows with lower reproductive performance at all three analyzed parities, especially sows at fifth parity produced the lowest total saturated fatty acid (SFA) levels, and showed the highest C18:1n9c and C18:2n6c concentrations. In correlational analyses, the abundance of Oligella, Lactobacillus, and Corynebacterium was highly positively correlated with C18:1n9c, C18:2n6c, and C20:4n6. Overall, these results provide a rational basis for efforts to improve sow reproductive performance through the provision of precisely regulated nutrition. KEY POINTS: • Clear differences in the fecal microbiota were evident between sows of different parities. • Lactating sows with high reproductive performance showed distinct milk fatty acid profiles.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"4"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yazhe Liang, Wangli Ji, Xianhua Sun, Zhenzhen Hao, Xiaolu Wang, Yuan Wang, Wei Zhang, Yingguo Bai, Xing Qin, Huiying Luo, Bin Yao, Xiaoyun Su, Huoqing Huang
{"title":"Production of cello-oligosaccharides from corncob residue by degradation-synthesis reactions.","authors":"Yazhe Liang, Wangli Ji, Xianhua Sun, Zhenzhen Hao, Xiaolu Wang, Yuan Wang, Wei Zhang, Yingguo Bai, Xing Qin, Huiying Luo, Bin Yao, Xiaoyun Su, Huoqing Huang","doi":"10.1007/s00253-023-12832-6","DOIUrl":"10.1007/s00253-023-12832-6","url":null,"abstract":"<p><p>The cellulose-rich corncob residue (CCR) is an abundant and renewable agricultural biomass that has been under-exploited. In this study, two strategies were compared for their ability to transform CCR into cello-oligosaccharides (COS). The first strategy employed the use of endo-glucanases. Although selected endo-glucanases from GH9, GH12, GH45, and GH131 could release COS with degrees of polymerization from 2 to 4, the degrading efficiency was low. For the second strategy, first, CCR was efficiently depolymerized to glucose and cellobiose using the cellulase from Trichoderma reesei. Then, using these simple sugars and sucrose as the starting materials, phosphorylases from different microorganisms were combined to generate COS to a level up to 100.3 g/L with different patterns and degrees of polymerization. Using tomato as a model plant, the representative COS obtained from BaSP (a sucrose phosphorylase from Bifidobacterium adolescens), CuCbP (a cellobiose phosphorylase from Cellulomonas uda), and CcCdP (a cellodextrin phosphorylase from Clostridium cellulosi) were shown to be able to promote plant growth. The current study pointed to an approach to make use of CCR for production of the value-added COS. KEY POINTS: • Sequential use of cellulase and phosphorylases effectively generated cello-oligosaccharides from corncob residue. • Cello-oligosaccharides patterns varied in accordance to cellobiose/cellodextrin phosphorylases. • Spraying cello-oligosaccharides promoted tomato growth.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"13"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vertical distribution of Candidatus Methylomirabilis and Methanoperedens in agricultural soils.","authors":"Lidong Shen, Yefan He, Qinan Hu, Yuling Yang, Bingjie Ren, Wangting Yang, Caiyu Geng, Jinghao Jin, Yanan Bai","doi":"10.1007/s00253-023-12876-8","DOIUrl":"10.1007/s00253-023-12876-8","url":null,"abstract":"<p><p>Candidatus Methylomirabilis-related bacteria conduct anaerobic oxidation of methane (AOM) coupling with NO<sub>2</sub><sup>-</sup> reduction, and Candidatus Methanoperedens-related archaea perform AOM coupling with reduction of diverse electron acceptors, including NO<sub>3</sub><sup>-</sup>, Fe (III), Mn (IV) and SO<sub>4</sub><sup>2-</sup>. Application of nitrogen fertilization favors the growth of these methanotrophs in agricultural fields. Here, we explored the vertical variations in community structure and abundance of the two groups of methanotrophs in a nitrogen-rich vegetable field via using illumina MiSeq sequencing and quantitative PCR. The retrieved Methylomirabilis-related sequences had 91.12%-97.32% identity to the genomes of known Methylomirabilis species, and Methanoperedens-related sequences showed 85.49%-97.48% identity to the genomes of known Methanoperedens species which are capable of conducting AOM coupling with reduction of NO<sub>3</sub><sup>-</sup> or Fe (III). The Methanoperedens-related archaeal diversity was significantly higher than Methylomirabilis-related bacteria, with totally 74 and 16 operational taxonomic units, respectively. In contrast, no significant difference in abundance between the bacteria (9.19 × 10<sup>3</sup>-3.83 × 10<sup>5</sup> copies g<sup>-1</sup> dry soil) and the archaea (1.55 × 10<sup>4</sup>-3.24 × 10<sup>5</sup> copies g<sup>-1</sup> dry soil) was observed. Furthermore, the abundance of both groups of methanotrophs exhibited a strong vertical variation, which peaked at 30-40 and 20-30 cm layers, respectively. Soil water content and pH were the key factors influencing Methylomirabilis-related bacterial diversity and abundance, respectively. For the Methanoperedens-related archaea, both soil pH and ammonium content contributed significantly to the changes of these archaeal diversity and abundance. Overall, we provide the first insights into the vertical distribution and regulation of Methylomirabilis-related bacteria and Methanoperedens-related archaea in vegetable soils. KEY POINTS: • The archaeal diversity was significantly higher than bacterial. • There was no significant difference in the abundance between bacteria and archaea. • The abundance of bacteria and archaea peaked at 30-40 and 20-30 cm, respectively.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"47"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}