Syed Bilal Shah, Yiting Wang, Naveed Anwar, Syed Zaghum Abbas, Khalid Ali Khan, Song-Mei Wang, Muhammad Wajid Ullah
{"title":"Co-metabolic degradation and metabolite detection of hexabromocyclododecane by Shewanella oneidensis MR-1","authors":"Syed Bilal Shah, Yiting Wang, Naveed Anwar, Syed Zaghum Abbas, Khalid Ali Khan, Song-Mei Wang, Muhammad Wajid Ullah","doi":"10.1007/s00253-023-12905-6","DOIUrl":"https://doi.org/10.1007/s00253-023-12905-6","url":null,"abstract":"<span> <h3>Abstract</h3> <p>Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant; however, it is a persistent organic pollutant as well as affects the human thyroid hormones and causes cancer. However, the degradation of HBCD has received little attention from researchers. Due to its bioaccumulative and hazardous properties, an appropriate strategy for its remediation is required. In this study, we investigated the biodegradation of HBCD using <em>Shewanella oneidensis</em> MR-1 under optimized conditions. The Box-Behnken design (BBD) was implemented for the optimization of the physical degradation parameters of HBCD. <em>S. oneidensis</em> MR-1 showed the best degradation performance at a temperature of 30 °C, pH 7, and agitation speed of 115 rpm, with an HBCD concentration of 1125 μg/L in mineral salt medium (MSM). The strain tolerated up to 2000 μg/L HBCD. Gas chromatography-mass spectrometry analysis identified three intermediates, including 2-bromo dodecane, 2,7,10-trimethyldodecane, and 4-methyl-1-decene. The results provide an insightful understanding of the biodegradation of HBCD by <em>S. oneidensis</em> MR-1 under optimized conditions and could pave the way for further eco-friendly applications.</p> </span> <span> <h3>Key points</h3> <p>• <em>HBCD biodegradation by Shewanella oneidensis</em></p> <p>• <em>Optimization of HBCD biodegradation by the Box-Behnken analysis</em></p> <p>• <em>Identification of useful metabolites from HBCD degradation</em></p> </span>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"6 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139068011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Younggun Yoon, Azilah Abd Aziz, In Seop Chang, Bongkyu Kim
{"title":"Prevalence of Escherichia coli in electrogenic biofilm on activated carbon in microbial fuel cell.","authors":"Younggun Yoon, Azilah Abd Aziz, In Seop Chang, Bongkyu Kim","doi":"10.1007/s00253-023-12829-1","DOIUrl":"10.1007/s00253-023-12829-1","url":null,"abstract":"<p><p>For a better understanding of the distribution of depth-dependent electrochemically active bacteria at in the anode zone, a customized system in a microbial fuel cell (MFC) packed with granular activated carbon (GAC) was developed and subsequently optimized via electrochemical tests. The constructed MFC system was sequentially operated using two types of matrice solutions: artificially controlled compositions (i.e., artificial wastewater, AW) and solutions obtained directly from actual sewage-treating municipal plants (i.e., municipal wastewater, MW). Notably, significant difference(s) of system efficiencies between AW or MW matrices were observed via performance tests, in that the electricity production capacity under MW matrices is < 25% that of the AW matrices. Interestingly, species of Escherichia coli (E. coli) sampled from the GAC bed (P1: deeper region in GAC bed, P2: shallow region of GAC near electrolytes) exhibited an average relative abundance of 75 to 90% in AW and a relative abundance of approximately 10% in MW, while a lower relative abundance of E. coli was found in both the AW and MW anolyte samples (L). Moreover, similar bacterial communities were identified in samples P1 and P2 for both the AW and MW solutions, indicating a comparable distribution of bacterial communities over the anode area. These results provide new insights into E. coli contribution in power production for the GAC-packed MFC systems (i.e., despite the low contents of Geobacter (> 8%) and Shewanella (> 1%)) for future applications in sustainable energy research. KEY POINTS: • A microbial community analysis for depth-dependence in biofilm was developed. • The system was operated with two matrices; electrochemical performance was assessed. • E. coli spp. was distinctly found in anode zone layers composed of activated carbon.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"52"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aspergillus oryzae PrtR alters transcription of individual peptidase genes in response to the growth environment.","authors":"Rika Numazawa, Yukako Tanaka, Sawako Nishioka, Ryotaro Tsuji, Hiroshi Maeda, Mizuki Tanaka, Michio Takeuchi, Youhei Yamagata","doi":"10.1007/s00253-023-12833-5","DOIUrl":"10.1007/s00253-023-12833-5","url":null,"abstract":"<p><p>Aspergillus oryzae PrtR is an ortholog of the transcription factor PrtT, which positively regulates the transcription of extracellular peptidase genes in Aspergillus niger and Aspergillus fumigatus. To identify the genes under the control of PrtR and elucidate its regulatory mechanism in A. oryzae, prtR gene disruption mutants were generated. The control strain clearly showed a halo on media containing skim milk as the nitrogen source, whereas the ΔprtR strain formed a smaller halo. Measurement of acid peptidase activity revealed that approximately 84% of acidic endopeptidase and 86% of carboxypeptidase activities are positively regulated by PrtR. As the transcription of the prtR gene varied depending on culture conditions, especially with or without a protein substrate, it was considered that its transcription would be regulated in response to a nitrogen source. In addition, contrary to previous expectations, PrtR was found to act both in promoting and repressing the transcription of extracellular peptidase genes. The mode of regulation varied from gene to gene. Some genes were regulated in the same manner in both liquid and solid cultures, whereas others were regulated in different ways depending on the culture conditions. Furthermore, PrtR has been suggested to regulate the transcription of peptidase genes that are closely associated with other transcription factors. KEY POINTS: • Almost all peptidase genes in Aspergillus oryzae are positively regulated by PrtR • However, several genes are regulated negatively by PrtR • PrtR optimizes transcription of peptidase genes in response to culture conditions.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"90"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Xu, Fulong Li, Xiaoli Zhang, Baipeng Chen, Yi Geng, Ping Ouyang, Defang Chen, Liangyu Li, Xiaoli Huang
{"title":"Microbiome analysis reveals the intestinal microbiota characteristics and potential impact of Procambarus clarkii.","authors":"Ming Xu, Fulong Li, Xiaoli Zhang, Baipeng Chen, Yi Geng, Ping Ouyang, Defang Chen, Liangyu Li, Xiaoli Huang","doi":"10.1007/s00253-023-12914-5","DOIUrl":"10.1007/s00253-023-12914-5","url":null,"abstract":"<p><p>The intestinal microbiota interacts with the host and plays an important role in the immune response, digestive physiology, and regulation of body functions. In addition, it is also well documented that the intestinal microbiota of aquatic animals are closely related to their growth rate. However, whether it resulted in different sizes of crayfish in the rice-crayfish coculture model remained vague. Here, we analyzed the intestinal microbiota characteristics of crayfish of three sizes in the same typical rice-crayfish coculture field by high-throughput sequencing technology combined with quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme activity, investigating the relationship between intestinal microbiota in crayfish and water and sediments. The results showed that the dominant intestinal microbiota of crayfish was significantly different between the large size group (BS), normal size group (NS), and small size group (SS), where Bacteroides and Candidatus_Bacilloplasma contributed to the growth of crayfish by facilitating food digestion through cellulolysis, which might be one of the potential factors affecting the difference in sizes. Follow-up experiments confirmed that the activity of lipase (LPS) and protease was higher in BS, and the relative expression of development-related genes, including alpha-amylase (α-AMY), myocyte-specific enhancer factor 2a (MEF2a), glutathione reductase (GR), chitinase (CHI), and ecdysone receptor (EcR), in BS was significantly higher than that in SS. These findings revealed the intestinal microbiota characteristics of crayfish of different sizes and their potential impact on growth, which is valuable for managing and manipulating the intestinal microbiota in crayfish to achieve high productivity in practice. KEY POINTS: • Significant differences in the dominant microflora of BS, NS, and SS in crayfish. • Cellulolysis might be a potential factor affecting different sizes in crayfish. • Adding Bacteroides and Candidatus_Bacilloplasma helped the growth of crayfish.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"77"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Windhagauer, Martina A Doblin, Brandon Signal, Unnikrishnan Kuzhiumparambil, Michele Fabris, Raffaela M Abbriano
{"title":"Metabolic response to a heterologous poly-3-hydroxybutyrate (PHB) pathway in Phaeodactylum tricornutum.","authors":"Matthias Windhagauer, Martina A Doblin, Brandon Signal, Unnikrishnan Kuzhiumparambil, Michele Fabris, Raffaela M Abbriano","doi":"10.1007/s00253-023-12823-7","DOIUrl":"10.1007/s00253-023-12823-7","url":null,"abstract":"<p><p>The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"104"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139429093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new peucemycin derivative and impacts of peuR and bldA on peucemycin biosynthesis in Streptomyces peucetius.","authors":"Rubin Thapa Magar, Van Thuy Thi Pham, Purna Bahadur Poudel, Adzemye Fovennso Bridget, Jae Kyung Sohng","doi":"10.1007/s00253-023-12923-4","DOIUrl":"10.1007/s00253-023-12923-4","url":null,"abstract":"<p><p>Streptomyces peucetius ATCC 27952 is known to produce a variety of secondary metabolites, including two important antitumor anthracyclines: daunorubicin and doxorubicin. Identification of peucemycin and 25-hydroxy peucemycin (peucemycin A), as well as their biosynthetic pathway, has expanded its biosynthetic potential. In this study, we isolated a new peucemycin derivative and identified it as 19-hydroxy peucemycin (peucemycin B). Its antibacterial activity was lower than those of peucemycin and peucemycin A. On the other hand, this newly identified peucemycin derivative had higher anticancer activity than the other two compounds for MKN45, NCI-H1650, and MDA-MB-231 cancer cell lines with IC<sub>50</sub> values of 76.97 µM, 99.68 µM, and 135.2 µM, respectively. Peucemycin biosynthetic gene cluster revealed the presence of a SARP regulator named PeuR whose role was unknown. The presence of the TTA codon in the peuR and the absence of global regulator BldA in S. peucetius reduced its ability to regulate the peucemycin biosynthetic gene cluster. Hence, different mutants harboring these genes were prepared. S. peucetius bldA25 harboring bldA produced 1.75 times and 1.77 times more peucemycin A (11.8 mg/L) and peucemycin B (21.2 mg/L), respectively, than the wild type. On the other hand, S. peucetius R25 harboring peuR produced 1.86 and 1.79 times more peucemycin A (12.5 mg/L) and peucemycin B (21.5 mg/L), respectively, than the wild type. Finally, strain S. peucetius bldAR25 carrying bldA and peuR produced roughly 3.52 and 2.63 times more peucemycin A (23.8 mg/L) and peucemycin B (31.5 mg/L), respectively, than the wild type. KEY POINTS: • This study identifies a new peucemycin derivative, 19-hydroxy peucemycin (peucemycin B). • The SARP regulator (PeuR) acts as a positive regulator of the peucemycin biosynthetic gene cluster. • The overexpression of peuR and heterologous expression of bldA increase the production of peucemycin derivatives.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"107"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jairo I Quintana-Bulla, Luciane A C Tonon, Lamonielli F Michaliski, Eduardo Hajdu, Antonio G Ferreira, Roberto G S Berlinck
{"title":"Testacosides A-D, glycoglycerolipids produced by Microbacterium testaceum isolated from Tedania brasiliensis.","authors":"Jairo I Quintana-Bulla, Luciane A C Tonon, Lamonielli F Michaliski, Eduardo Hajdu, Antonio G Ferreira, Roberto G S Berlinck","doi":"10.1007/s00253-023-12870-0","DOIUrl":"10.1007/s00253-023-12870-0","url":null,"abstract":"<p><p>Marine bacteria living in association with marine sponges have proven to be a reliable source of biologically active secondary metabolites. However, no studies have yet reported natural products from Microbacterium testaceum spp. We herein report the isolation of a M. testaceum strain from the sponge Tedania brasiliensis. Molecular networking analysis of bioactive pre-fractionated extracts from culture media of M. testaceum enabled the discovery of testacosides A-D. Analysis of spectroscopic data and chemical derivatizations allowed the identification of testacosides A-D as glycoglycerolipids bearing a 1-[α-glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol moiety connected to 12-methyltetradecanoic acid for testacoside A (1), 14-methylpentadecanoic acid for testacoside B (2), and 14-methylhexadecanoic acid for testacosides C (3) and D (4). The absolute configuration of the monosaccharide residues was determined by <sup>1</sup>H-NMR analysis of the respective diastereomeric thiazolidine derivatives. This is the first report of natural products isolated from cultures of M. testaceum. KEY POINTS: • The first report of metabolites produced by Microbacterium testaceum. • 1-[α-Glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol lipids isolated and identified. • Microbacterium testaceum strain isolated from the sponge Tedania brasiliensis.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"112"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of a novel aspartic protease from Trichoderma asperellum for the preparation of duck blood peptides.","authors":"Yibin Xue, Qiaojuan Yan, Xue Li, Zhengqiang Jiang","doi":"10.1007/s00253-023-12848-y","DOIUrl":"10.1007/s00253-023-12848-y","url":null,"abstract":"<p><p>A novel aspartic protease gene (TaproA1) from Trichoderma asperellum was successfully expressed in Komagataella phaffii (Pichia pastoris). TaproA1 showed 52.8% amino acid sequence identity with the aspartic protease PEP3 from Coccidioides posadasii C735. TaproA1 was efficiently produced in a 5 L fermenter with a protease activity of 4092 U/mL. It exhibited optimal reaction conditions at pH 3.0 and 50 °C and was stable within pH 3.0-6.0 and at temperatures up to 45 °C. The protease exhibited broad substrate specificity with high hydrolysis activity towards myoglobin and hemoglobin. Furthermore, duck blood proteins (hemoglobin and plasma protein) were hydrolyzed by TaproA1 to prepare bioactive peptides with high ACE inhibitory activity. The IC<sub>50</sub> values of hemoglobin and plasma protein hydrolysates from duck blood proteins were 0.105 mg/mL and 0.091 mg/mL, respectively. Thus, the high yield and excellent biochemical characterization of TaproA1 presented here make it a potential candidate for the preparation of duck blood peptides. KEY POINTS: • An aspartic protease (TaproA1) from Trichoderma asperellum was expressed in Komagataella phaffii. • TaproA1 exhibited broad substrate specificity and the highest activity towards myoglobin and hemoglobin. • TaproA1 has great potential for the preparation of bioactive peptides from duck blood proteins.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"131"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhibo Zeng, Saisai Gong, Chuxian Quan, Shimeng Zhou, Muhammad Fakhar-E-Alam Kulyar, Mudassar Iqbal, Yan Li, Xiang Li, Jiakui Li
{"title":"Impact of Bacillus licheniformis from yaks following antibiotic therapy in mouse model.","authors":"Zhibo Zeng, Saisai Gong, Chuxian Quan, Shimeng Zhou, Muhammad Fakhar-E-Alam Kulyar, Mudassar Iqbal, Yan Li, Xiang Li, Jiakui Li","doi":"10.1007/s00253-023-12866-w","DOIUrl":"10.1007/s00253-023-12866-w","url":null,"abstract":"<p><p>Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"139"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
So Yanagibashi, Takahiro Bamba, Takayoshi Kirisako, Akihiko Kondo, Tomohisa Hasunuma
{"title":"The potency of mitochondria enlargement for mitochondria-mediated terpenoid production in yeast.","authors":"So Yanagibashi, Takahiro Bamba, Takayoshi Kirisako, Akihiko Kondo, Tomohisa Hasunuma","doi":"10.1007/s00253-023-12922-5","DOIUrl":"10.1007/s00253-023-12922-5","url":null,"abstract":"<p><p>Terpenoids are widely used in the food, beverage, cosmetics, and pharmaceutical industries. Microorganisms have been extensively studied for terpenoid production. In yeast, the introduction of the mevalonate (MVA) pathway in organelles in addition to the augmentation of its own MVA pathway have been challenging. Introduction of the MVA pathway into mitochondria is considered a promising approach for terpenoid production because acetyl-CoA, the starting molecule of the MVA pathway, is abundant in mitochondria. However, mitochondria comprise only a small percentage of the entire cell. Therefore, we hypothesized that increasing the total mitochondrial volume per cell would increase terpenoid production. First, we ascertained that the amounts of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the final molecules of the MVA pathway, were 15-fold higher of the strain expressing the MVA pathway in mitochondria than in the wild-type yeast strain. Second, we found that different deletion mutants induced different mitochondrial volumes by measuring the mitochondrial volume in various deletion mutants affecting mitochondrial morphology; for example,Δmdm32 increased mitochondrial volume, and Δfzo1 decreased it. Finally, the effects of mitochondrial volume on amounts of IPP/DMAPP and terpenoids (squalene or β-carotene) were investigated using mutants harboring large or small mitochondria expressing the MVA pathway in mitochondria. Amounts of IPP/DMAPP and terpenoids (squalene or β-carotene) increased when the mitochondrial volume expanded. Introducing the MVA pathway into mitochondria for terpenoid production in yeast may become more attractive by enlarging the mitochondrial volume. KEY POINTS: • IPP/DMAPP content increased in the strain expressing the MVA pathway in mitochondria • IPP/DMAPP and terpenoid contents are positively correlated with mitochondrial volume • Enlarging the mitochondria may improve mitochondria-mediated terpenoid production.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"110"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}