Joanna Honselmann Genannt Humme, Kamila Dubrowska, Magdalena Perużyńska, Marek Droździk, Radosław Birger, Martyna Jurkiewicz, Tomasz Kędzierski, Ewa Mijowska, Tomasz Idzik, Jacek G Sośnicki, Elżbieta Filipek, Mateusz Piz, Rafał Rakoczy, Adrian Augustyniak
{"title":"Multi-walled carbon nanotubes as reusable boosters of pyocyanin production for anticancer research.","authors":"Joanna Honselmann Genannt Humme, Kamila Dubrowska, Magdalena Perużyńska, Marek Droździk, Radosław Birger, Martyna Jurkiewicz, Tomasz Kędzierski, Ewa Mijowska, Tomasz Idzik, Jacek G Sośnicki, Elżbieta Filipek, Mateusz Piz, Rafał Rakoczy, Adrian Augustyniak","doi":"10.1007/s00253-025-13543-w","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon nanotubes (CNTs) emerged as nanomaterials with a wide variety of applications, e.g., as boosters of bioprocesses efficiency. The stimulation of the production of the blue pigment called pyocyanin is one of numerous examples. Moreover, its importance comes from the potential anticancer properties of the pigment. Therefore, this contribution evaluated different commercially available multi-walled carbon nanotubes (MWCNTs) in pyocyanin production using the Design of Experiment methodology. The interactions between pigment-producing bacteria and nanomaterials were revealed as well. Moreover, the purified pigment was tested against normal and cancer cell lines. Interestingly, the results showed that all tested CNTs stimulated pyocyanin production. The most effective CNTs were used in the process optimisation in terms of temperature (32 °C) and carbon nanomaterial concentration (812 μg/mL). It was also revealed that the optical density and viability of the bacterial culture were elevated, while the pyoverdine production was decreased. Furthermore, no oxidative stress was detected. Moreover, the confocal microscopy study indicated that the cells surrounded the aggregates of MWCNT and produced more proteins within the biofilm structure, compared to the control experiment. The tests on neoplastic cell lines showed an excellent antiproliferative activity of pyocyanin against melanoma without pronounced adverse effects on normal fibroblasts. The nanomaterial incorporated in the bioprocess was successfully reused, making the method sustainable and cost-effective. KEY POINTS: • The stimulative effect of nanomaterial on pyocyanin production was optimised • Nanomaterial can be reused in the bioprocess without losing the stimulative effect • Pyocyanin exhibits significant antiproliferative action against melanoma.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":"167"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-025-13543-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanotubes (CNTs) emerged as nanomaterials with a wide variety of applications, e.g., as boosters of bioprocesses efficiency. The stimulation of the production of the blue pigment called pyocyanin is one of numerous examples. Moreover, its importance comes from the potential anticancer properties of the pigment. Therefore, this contribution evaluated different commercially available multi-walled carbon nanotubes (MWCNTs) in pyocyanin production using the Design of Experiment methodology. The interactions between pigment-producing bacteria and nanomaterials were revealed as well. Moreover, the purified pigment was tested against normal and cancer cell lines. Interestingly, the results showed that all tested CNTs stimulated pyocyanin production. The most effective CNTs were used in the process optimisation in terms of temperature (32 °C) and carbon nanomaterial concentration (812 μg/mL). It was also revealed that the optical density and viability of the bacterial culture were elevated, while the pyoverdine production was decreased. Furthermore, no oxidative stress was detected. Moreover, the confocal microscopy study indicated that the cells surrounded the aggregates of MWCNT and produced more proteins within the biofilm structure, compared to the control experiment. The tests on neoplastic cell lines showed an excellent antiproliferative activity of pyocyanin against melanoma without pronounced adverse effects on normal fibroblasts. The nanomaterial incorporated in the bioprocess was successfully reused, making the method sustainable and cost-effective. KEY POINTS: • The stimulative effect of nanomaterial on pyocyanin production was optimised • Nanomaterial can be reused in the bioprocess without losing the stimulative effect • Pyocyanin exhibits significant antiproliferative action against melanoma.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.