{"title":"Detecting and quantifying Veillonella by real-time quantitative PCR and droplet digital PCR.","authors":"Zanbo Ding, Jinghua Cui, Qun Zhang, Junxia Feng, Bing Du, Guanhua Xue, Chao Yan, Lin Gan, Zheng Fan, Yanling Feng, Hanqing Zhao, Ziying Xu, Zihui Yu, Tongtong Fu, Rui Zhang, Xiaohu Cui, Ziyan Tian, Jinfeng Chen, Yujie Chen, Zhoufei Li, Xuemei Zhong, Yanbing Lin, Jing Yuan","doi":"10.1007/s00253-023-12861-1","DOIUrl":"10.1007/s00253-023-12861-1","url":null,"abstract":"<p><p>Veillonella spp. are Gram-negative opportunistic pathogens present in the respiratory, digestive, and reproductive tracts of mammals. An abnormal increase in Veillonella relative abundance in the body is closely associated with periodontitis, inflammatory bowel disease, urinary tract infections, and many other diseases. We designed a pair of primers and a probe based on the 16S rRNA gene sequences of Veillonella and conducted real-time quantitative PCR (qPCR) and droplet digital PCR (ddPCR) to quantify the abundance of Veillonella in fecal samples. These two methods were tested for specificity and sensitivity using simulated clinical samples. The sensitivity of qPCR was 100 copies/μL, allowing for the accurate detection of a wide range of Veillonella concentrations from 10<sup>3</sup> to 10<sup>8</sup> CFU/mL. The sensitivity of ddPCR was 11.3 copies/μL, only allowing for the accurate detection of Veillonella concentrations from 10<sup>1</sup> to 10<sup>4</sup> CFU/mL because of the limited number of droplets generated by ddPCR. ddPCR is therefore more suitable for the detection of low-abundance Veillonella samples. To characterize the validity of the assay system, clinical samples from children with inflammatory bowel disease were collected and analyzed, and the results were verified using isolation methods. We conclude that molecular assays targeting the 16S rRNA gene provides an important tool for the rapid diagnosis of chronic and infectious diseases caused by Veillonella and also supports the isolation and identification of Veillonella for research purposes. KEY POINTS: • With suitable primer sets, the qPCR has a wider detection range than ddPCR. • ddPCR is suitable for the detection of low-abundance samples. • Methods successfully guided the isolation of Veillonella in clinical sample.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"45"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue-Sheng Zhang, Jin-Song Gong, Jia-Yu Jiang, Zheng-Hong Xu, Jin-Song Shi
{"title":"Engineering protein translocation and unfolded protein response enhanced human PH-20 secretion in Pichia pastoris.","authors":"Yue-Sheng Zhang, Jin-Song Gong, Jia-Yu Jiang, Zheng-Hong Xu, Jin-Song Shi","doi":"10.1007/s00253-023-12878-6","DOIUrl":"10.1007/s00253-023-12878-6","url":null,"abstract":"<p><p>Hyaluronidases catalyze the degradation of hyaluronan (HA), which is finding rising applications in medicine, cosmetic, and food industries. Recombinant expression of hyaluronidases in microbial hosts has been given special attention as a sustainable way to substitute animal tissue-derived hyaluronidases. In this study, we focused on optimizing the secretion of hyaluronidase from Homo sapiens in Pichia pastoris by secretion pathway engineering. The recombinant hyaluronidase was first expressed under the control of a constitutive promoter P<sub>GCW14</sub>. Then, two endoplasmic reticulum-related secretory pathways were engineered to improve the secretion capability of the recombinant strain. Signal peptide optimization suggested redirecting the protein into co-translational translocation using the ost1-proα signal sequence improved the secretion level by 20%. Enhancing the co-translational translocation by overexpressing signal recognition particle components further enhanced the secretory capability by 48%. Then, activating the unfolded protein response by overexpressing a transcriptional factor ScHac1p led to a secreted hyaluronidase activity of 4.06 U/mL, which was 2.1-fold higher than the original strain. Finally, fed-batch fermentation elevated the production to 19.82 U/mL. The combined engineering strategy described here could be applied to enhance the secretion capability of other proteins in yeast hosts. KEY POINTS: • Improving protein secretion by enhancing co-translational translocation in P. pastoris was reported for the first time. • Overexpressing Hac1p homologous from different origins improved the rhPH-20 secretion. • A 4.9-fold increase in rhPH-20 secretion was achieved after fermentation optimization and fed-batch fermentation.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"54"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of folic acid in regulating gut microbiota and short-chain fatty acids based on an in vitro fermentation model.","authors":"Xiaogu Zheng, Chenlan Xia, Manman Liu, Hongchen Wu, Jiaqian Yan, Zihao Zhang, Yingjie Huang, Qing Gu, Ping Li","doi":"10.1007/s00253-023-12825-5","DOIUrl":"10.1007/s00253-023-12825-5","url":null,"abstract":"<p><p>Folic acid deficiency is common worldwide and is linked to an imbalance in gut microbiota. However, based on model animals used to study the utilization of folic acid by gut microbes, there are challenges of reproducibility and individual differences. In this study, an in vitro fecal slurry culture model of folic acid deficiency was established to investigate the effects of supplementation with 5-methyltetrahydrofolate (MTHF) and non-reduced folic acid (FA) on the modulation of gut microbiota. 16S rRNA sequencing results revealed that both FA (29.7%) and MTHF (27.9%) supplementation significantly reduced the relative abundance of Bacteroidetes compared with control case (34.3%). MTHF supplementation significantly improved the relative abundance of Firmicutes by 4.49%. Notably, compared with the control case, FA and MTHF supplementation promoted an increase in fecal levels of Lactobacillus, Bifidobacterium, and Pediococcus. Short-chain fatty acid (SCFA) analysis showed that folic acid supplementation decreased acetate levels and increased fermentative production of isobutyric acid. The in vitro fecal slurry culture model developed in this study can be utilized as a model of folic acid deficiency in humans to study the gut microbiota and demonstrate that exogenous folic acid affects the composition of the gut microbiota and the level of SCFAs. KEY POINTS: • Establishment of folic acid deficiency in an in vitro culture model. • Folic acid supplementation regulates intestinal microbes and SCFAs. • Connections between microbes and SCFAs after adding folic acid are built.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"40"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenxi He, Haiyang Zhang, Xi Chen, Rujing Diao, Jianan Sun, Xiangzhao Mao
{"title":"Novel reaction systems for catalytic synthesis of structured phospholipids.","authors":"Chenxi He, Haiyang Zhang, Xi Chen, Rujing Diao, Jianan Sun, Xiangzhao Mao","doi":"10.1007/s00253-023-12913-6","DOIUrl":"10.1007/s00253-023-12913-6","url":null,"abstract":"<p><p>Phospholipids are distinctive, adaptable molecules that are crucial to numerous biological systems. Additionally, their various architectures and amphiphilic characteristics support their unrivaled crucial functions in scientific and industrial applications. Due to their enormous potential for use in the fields of medicine, food, cosmetics, and health, structured phospholipids, which are modified phospholipids, have garnered increased attention. Traditional extraction methods, however, are pricy, resource-intensive, and low-yielding. The process of enzyme-catalyzed conversion is effective for producing several types of structured phospholipase. However, most frequently employed catalytic procedures involve biphasic systems with organic solvents, which have a relatively large mass transfer resistance and are susceptible to solvent residues and environmental effects due to the hydrophobic nature of phospholipids. Therefore, the adoption of innovative, successful, and environmentally friendly enzyme-catalyzed conversion systems provides a new development route in the field of structured phospholipids processing. Several innovative catalytic reaction systems are discussed in this mini-review, including aqueous-solid system, mixed micelle system, water-in-oil microemulsion system, Pickering emulsion system, novel solvent system, three-liquid-phase system, and supercritical carbon dioxide solvent system. However, there is still a glaring need for a thorough examination of these systems for the enzymatic synthesis of structural phospholipids. In terms of the materials utilized, applicability, benefits and drawbacks, and comparative effectiveness of each system, this research establishes further conditions for the system's selection. To create more effective biocatalytic processes, it is still important to build green biocatalytic processes with improved performance. KEY POINTS: • The latest catalytic systems of phospholipase D are thoroughly summarized. • The various systems are contrasted, and their traits are enumerated. • Different catalytic systems' areas of applicability and limitations are discussed.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"1"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resistance mechanism of Escherichia coli strains with different ampicillin resistance levels.","authors":"Osman Türkyılmaz, Cihan Darcan","doi":"10.1007/s00253-023-12929-y","DOIUrl":"10.1007/s00253-023-12929-y","url":null,"abstract":"<p><p>Antibiotic resistance is an important problem that threatens medical treatment. Differences in the resistance levels of microorganisms cause great difficulties in understanding the mechanisms of antibiotic resistance. Therefore, the molecular reasons underlying the differences in the level of antibiotic resistance need to be clarified. For this purpose, genomic and transcriptomic analyses were performed on three Escherichia coli strains with varying degrees of adaptive resistance to ampicillin. Whole-genome sequencing of strains with different levels of resistance detected five mutations in strains with 10-fold resistance and two additional mutations in strains with 95-fold resistance. Overall, three of the seven mutations occurred as a single base change, while the other four occurred as insertions or deletions. While it was thought that 10-fold resistance was achieved by the effect of mutations in the ftsI, marAR, and rpoC genes, it was found that 95-fold resistance was achieved by the synergistic effect of five mutations and the ampC mutation. In addition, when the general transcriptomic profiles were examined, it was found that similar transcriptomic responses were elicited in strains with different levels of resistance. This study will improve our view of resistance mechanisms in bacteria with different levels of resistance and provide the basis for our understanding of the molecular mechanism of antibiotic resistance in ampicillin-resistant E. coli strains. KEY POINTS: •The mutation of the ampC promoter may act synergistically with other mutations and lead to higher resistance. •Similar transcriptomic responses to ampicillin are induced in strains with different levels of resistance. •Low antibiotic concentrations are the steps that allow rapid achievement of high antibiotic resistance.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"5"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A mycofactocin-associated dehydrogenase is essential for ethylene glycol metabolism by Rhodococcus jostii RHA1.","authors":"Tetsu Shimizu, Kai Suzuki, Masayuki Inui","doi":"10.1007/s00253-023-12966-7","DOIUrl":"10.1007/s00253-023-12966-7","url":null,"abstract":"<p><p>Ethylene glycol is an industrially important diol in many manufacturing processes and a building block of polymers, such as poly(ethylene terephthalate). In this study, we found that a mycolic acid-containing bacterium Rhodococcus jostii RHA1 can grow with ethylene glycol as a sole source of carbon and energy. Deletion of a putative glycolate dehydrogenase gene (RHA1_ro03227) abolished growth with ethylene glycol, indicating that ethylene glycol is assimilated via glycolate in R. jostii RHA1. Transcriptome sequencing and gene deletion analyses revealed that a gene homologous to mycofactocin (MFT)-associated dehydrogenase (RHA1_ro06057), hereafter referred to as EgaA, is essential for ethylene glycol assimilation. Furthermore, egaA deletion also negatively affected the utilization of ethanol, 1-propanol, propylene glycol, and 1-butanol, suggesting that EgaA is involved in the utilization of various alcohols in R. jostii RHA1. Deletion of MFT biosynthetic genes abolished growth with ethylene glycol, indicating that MFT is the physiological electron acceptor of EgaA. Further genetic studies revealed that a putative aldehyde dehydrogenase (RHA1_ro06081) is a major aldehyde dehydrogenase in ethylene glycol metabolism by R. jostii RHA1. KEY POINTS: • Rhodococcus jostii RHA1 can assimilate ethylene glycol via glycolate • A mycofactocin-associated dehydrogenase is involved in the oxidation of ethylene glycol • An aldehyde dehydrogenase gene is important for the ethylene glycol assimilation.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"58"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Said Nawab, YaFei Zhang, Muhammad Wajid Ullah, Adil Farooq Lodhi, Syed Bilal Shah, Mujeeb Ur Rahman, Yang-Chun Yong
{"title":"Microbial host engineering for sustainable isobutanol production from renewable resources.","authors":"Said Nawab, YaFei Zhang, Muhammad Wajid Ullah, Adil Farooq Lodhi, Syed Bilal Shah, Mujeeb Ur Rahman, Yang-Chun Yong","doi":"10.1007/s00253-023-12821-9","DOIUrl":"10.1007/s00253-023-12821-9","url":null,"abstract":"<p><p>Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"33"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biyun Zhang, Hongling Yang, Guohe Cai, Qingjie Nie, Yunzhang Sun
{"title":"The interactions between the host immunity and intestinal microorganisms in fish.","authors":"Biyun Zhang, Hongling Yang, Guohe Cai, Qingjie Nie, Yunzhang Sun","doi":"10.1007/s00253-023-12934-1","DOIUrl":"10.1007/s00253-023-12934-1","url":null,"abstract":"<p><p>There is a huge quantity of microorganisms in the gut of fish, which exert pivotal roles in maintaining host intestinal and general health. The fish immunity can sense and shape the intestinal microbiota and maintain the intestinal homeostasis. In the meantime, the intestinal commensal microbes regulate the fish immunity, control the extravagant proliferation of pathogenic microorganisms, and ensure the intestinal health of the host. This review summarizes developments and progress on the known interactions between host immunity and intestinal microorganisms in fish, focusing on the recent advances in zebrafish (Danio rerio) showing the host immunity senses and shapes intestinal microbiota, and intestinal microorganisms tune host immunity. This review will offer theoretical references for the development, application, and commercialization of intestinal functional microorganisms in fish. KEY POINTS: • The interactions between the intestinal microorganisms and host immunity in zebrafish • Fish immunity senses and shapes the microbiota • Intestinal microbes tune host immunity in fish.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"30"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bacterial community and filamentous population of industrial wastewater treatment plants in Belgium.","authors":"Karina Seguel Suazo, Thomas Dobbeleers, Jan Dries","doi":"10.1007/s00253-023-12822-8","DOIUrl":"10.1007/s00253-023-12822-8","url":null,"abstract":"<p><p>The discharge of industrial water requires the removal of its pollutants, where biological wastewater treatment plants (WWTPs) are the most used systems. Biological WWTPs make use of activated sludge (AS), where bacteria are responsible for the removal of pollutants. However, our knowledge of the microbial communities of industrial plants is limited. Understanding the microbial population is essential to provide solutions to industrial problems such as bulking. The aim of this study was to identify at a high taxonomic resolution the bacterial population of 29 industrial WWTPs using 16S rRNA amplicon sequencing. Our results revealed that the main functional groups were dominated by Thauera and Zoogloea within denitrifiers, Dechloromonas in phosphate-accumulating organisms, and Defluviicoccus in glycogen-accumulating organisms. The activated sludge characterization indicated that 59% of the industrial plants suffered from bulking sludge, with DSVI values of up to 448 mL g<sup>-1</sup>. From the bulking cases, 72% corresponded to filamentous bulking with Thiothrix as the most abundant filament; meanwhile, the other 28% corresponded to viscous bulking sludge in which Zoogloea was the most abundant genus. Furthermore, the bacterial population did not share a core of taxa across all industrial plants. However, 20 genera were present in at least 50% of the plants comprising the general core, including Thauera, Ca. Competibacter, and several undescribed microorganisms. Moreover, statistical analysis revealed that wastewater salinity strongly affected the microbial richness of the industrial plants. The bacterial population across industrial plants differed considerably from each other, resulting in unique microbial communities that are attributed to the specificity of their wastewaters. KEY POINTS: • The general core taxa of industrial plants were mostly made up of undescribed bacterial genera. • Filamentous bacteria constituted on average 4.1% read abundance of the industrial WWTPs. • Viscous bulking remains a significant type of bulking within industrial WWTPs.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"43"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139097210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma Dutilloy, Anthony Arguëlles Arias, Nicolas Richet, Jean-François Guise, Matthieu Duban, Valérie Leclere, Sameh Selim, Philippe Jacques, Cédric Jacquard, Christophe Clément, Essaïd Ait Barka, Qassim Esmaeel
{"title":"Bacillus velezensis BE2 controls wheat and barley diseases by direct antagonism and induced systemic resistance.","authors":"Emma Dutilloy, Anthony Arguëlles Arias, Nicolas Richet, Jean-François Guise, Matthieu Duban, Valérie Leclere, Sameh Selim, Philippe Jacques, Cédric Jacquard, Christophe Clément, Essaïd Ait Barka, Qassim Esmaeel","doi":"10.1007/s00253-023-12864-y","DOIUrl":"10.1007/s00253-023-12864-y","url":null,"abstract":"<p><p>Wheat and barley rank among the main crops cultivated on a global scale, providing the essential nutritional foundation for both humans and animals. Nevertheless, these crops are vulnerable to several fungal diseases, such as Septoria tritici blotch and net blotch, which significantly reduce yields by adversely affecting leaves and grain quality. To mitigate the effect of these diseases, chemical fungicides have proven to be genuinely effective; however, they impose a serious environmental burden. Currently, biocontrol agents have attracted attention as a sustainable alternative to fungicides, offering an eco-friendly option. The study aimed to assess the efficacy of Bacillus velezensis BE2 in reducing disease symptoms caused by Zymoseptoria tritici and Pyrenophora teres. This bacterium exhibited significant antagonistic effects in vitro by suppressing fungal development when pathogens and the beneficial strain were in direct confrontation. These findings were subsequently confirmed through microscopic analysis, which illustrated the strain's capacity to inhibit spore germination and mycelial growth in both pathogens. Additionally, the study analysed the cell-free supernatant of the bacterium using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry). The results revealed that strain BE2 produces, among other metabolites, different families of cyclic lipopeptides that may be involved in biocontrol. Furthermore, the beneficial effects of strain BE2 in planta were assessed by quantifying the fungal DNA content directly at the leaf level after bacterization, using two different application methods (foliar and drenching). The results indicated that applying the beneficial bacterium at the root level significantly reduced pathogens pressure. Finally, gene expression analysis of different markers showed that BE2 application induced a priming effect within the first hours after infection. KEY POINTS: • BE2 managed Z. tritici and P. teres by direct antagonism and induced systemic resistance. • Strain BE2 produced seven metabolite families, including three cyclic lipopeptides. • Application of strain BE2 at the root level triggered plant defense mechanisms.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":"64"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}