{"title":"Streptomyces sp. F-3的功能蛋白质组学分析揭示了其有效降解废酵母的潜力。","authors":"Mengyu Liu, Shuxia Huang, Peng Yan, Xiuyun Wu, Hua Yin, Lushan Wang","doi":"10.1007/s00253-025-13541-y","DOIUrl":null,"url":null,"abstract":"<p><p>Streptomyces are renowned in pharmaceutical and medical fields for their ability to produce antibiotics and other bioactive secondary metabolites. In order to reduce industrial production costs, it is crucial to find suitable and cheaper raw materials as carbon and nitrogen sources for microbial growth processes. This study investigated the substrate preference of Streptomyces sp. F-3 using functional proteomic analysis. Streptomyces sp. F-3 exhibited varying degradation and utilization rates for different nitrogen source. The results indicated that the strain F-3 could not efficiently degrade intact globular proteins, but preferred to degrade peptone or protein hydrolysate, especially for waste-yeast. The strain F-3 could utilize waste-yeast to grow rapidly and produced a large amount of extracellular protein. The substrate-binding patterns of three S8 proteases secreted by Streptomyces sp. F-3 determined the nitrogen source degradation preference of the strain. In addition, the strain F-3 could secrete large amounts of β-glucanase and chitinase to utilize cell wall polysaccharides. Thus, waste-yeast, rich in peptone, β-glucan, and chitin, could be the superior substrate for culturing Streptomyces. This study not only broadens the application scenarios for waste-yeast, but also provides valuable insights for rapid and cost-effective industrial microbial cultivation. KEY POINTS: The substrate preference of Streptomyces sp. F-3 was analyzed by integrative omics. Structural omics revealed the hydrolysis specificity of S8 proteases from F-3. Waste-yeast served as the superior substrate for culturing Streptomyces.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":"157"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214041/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional proteomic analysis of Streptomyces sp. F-3 reveals its potential to effectively degrade waste-yeast.\",\"authors\":\"Mengyu Liu, Shuxia Huang, Peng Yan, Xiuyun Wu, Hua Yin, Lushan Wang\",\"doi\":\"10.1007/s00253-025-13541-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Streptomyces are renowned in pharmaceutical and medical fields for their ability to produce antibiotics and other bioactive secondary metabolites. In order to reduce industrial production costs, it is crucial to find suitable and cheaper raw materials as carbon and nitrogen sources for microbial growth processes. This study investigated the substrate preference of Streptomyces sp. F-3 using functional proteomic analysis. Streptomyces sp. F-3 exhibited varying degradation and utilization rates for different nitrogen source. The results indicated that the strain F-3 could not efficiently degrade intact globular proteins, but preferred to degrade peptone or protein hydrolysate, especially for waste-yeast. The strain F-3 could utilize waste-yeast to grow rapidly and produced a large amount of extracellular protein. The substrate-binding patterns of three S8 proteases secreted by Streptomyces sp. F-3 determined the nitrogen source degradation preference of the strain. In addition, the strain F-3 could secrete large amounts of β-glucanase and chitinase to utilize cell wall polysaccharides. Thus, waste-yeast, rich in peptone, β-glucan, and chitin, could be the superior substrate for culturing Streptomyces. This study not only broadens the application scenarios for waste-yeast, but also provides valuable insights for rapid and cost-effective industrial microbial cultivation. KEY POINTS: The substrate preference of Streptomyces sp. F-3 was analyzed by integrative omics. Structural omics revealed the hydrolysis specificity of S8 proteases from F-3. Waste-yeast served as the superior substrate for culturing Streptomyces.</p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"109 1\",\"pages\":\"157\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214041/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00253-025-13541-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-025-13541-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Functional proteomic analysis of Streptomyces sp. F-3 reveals its potential to effectively degrade waste-yeast.
Streptomyces are renowned in pharmaceutical and medical fields for their ability to produce antibiotics and other bioactive secondary metabolites. In order to reduce industrial production costs, it is crucial to find suitable and cheaper raw materials as carbon and nitrogen sources for microbial growth processes. This study investigated the substrate preference of Streptomyces sp. F-3 using functional proteomic analysis. Streptomyces sp. F-3 exhibited varying degradation and utilization rates for different nitrogen source. The results indicated that the strain F-3 could not efficiently degrade intact globular proteins, but preferred to degrade peptone or protein hydrolysate, especially for waste-yeast. The strain F-3 could utilize waste-yeast to grow rapidly and produced a large amount of extracellular protein. The substrate-binding patterns of three S8 proteases secreted by Streptomyces sp. F-3 determined the nitrogen source degradation preference of the strain. In addition, the strain F-3 could secrete large amounts of β-glucanase and chitinase to utilize cell wall polysaccharides. Thus, waste-yeast, rich in peptone, β-glucan, and chitin, could be the superior substrate for culturing Streptomyces. This study not only broadens the application scenarios for waste-yeast, but also provides valuable insights for rapid and cost-effective industrial microbial cultivation. KEY POINTS: The substrate preference of Streptomyces sp. F-3 was analyzed by integrative omics. Structural omics revealed the hydrolysis specificity of S8 proteases from F-3. Waste-yeast served as the superior substrate for culturing Streptomyces.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.