{"title":"Nipah virus: pathogenesis, genome, diagnosis, and treatment.","authors":"Rishav Madhukalya, Urvashi Yadav, Hilal Ahmad Parray, Nisha Raj, Santhik Subhasingh Lupitha, Vivek Kumar, Anjali Saroj, Vidushi Agarwal, Dilip Kumar, Supratik Das, Rajesh Kumar","doi":"10.1007/s00253-025-13474-6","DOIUrl":null,"url":null,"abstract":"<p><p>The highly infectious Nipah virus (NiV) is classified under the Paramyxoviridae family and is categorized under the genus Henipavirus. NiV spreads to humans through zoonotic transmission from reservoir host bats and other intermediate hosts. It is highly contagious and has a high case fatality rate (CFR) of ~ 40-80%. Only sporadic outbreaks have been reported so far, but like SARS-CoV2, NiV has a high pandemic potential and has been put on the World Health Organization (WHO) priority pathogen list. Currently, no clinically approved antivirals, immunotherapy, or vaccines are available to tackle NiV infection, thereby necessitating further research into its life cycle, transmission, and pathogenesis. This detailed review outlines the origin and spread of the Nipah virus, its modes of transmission, risk factors, its genome, key proteins, pathogenesis, and clinical features. We also discuss different diagnostic approaches and ongoing research to develop therapies ranging from antibodies to vaccines. KEY POINTS: •Pandemic preparedness for emerging and re-emerging viruses. •Novel approaches for diagnostics and therapeutics for Nipah viruse. •Global threat from biosafety level 4 pathogens. •Animal models for Nipah virus research.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":"158"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-025-13474-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The highly infectious Nipah virus (NiV) is classified under the Paramyxoviridae family and is categorized under the genus Henipavirus. NiV spreads to humans through zoonotic transmission from reservoir host bats and other intermediate hosts. It is highly contagious and has a high case fatality rate (CFR) of ~ 40-80%. Only sporadic outbreaks have been reported so far, but like SARS-CoV2, NiV has a high pandemic potential and has been put on the World Health Organization (WHO) priority pathogen list. Currently, no clinically approved antivirals, immunotherapy, or vaccines are available to tackle NiV infection, thereby necessitating further research into its life cycle, transmission, and pathogenesis. This detailed review outlines the origin and spread of the Nipah virus, its modes of transmission, risk factors, its genome, key proteins, pathogenesis, and clinical features. We also discuss different diagnostic approaches and ongoing research to develop therapies ranging from antibodies to vaccines. KEY POINTS: •Pandemic preparedness for emerging and re-emerging viruses. •Novel approaches for diagnostics and therapeutics for Nipah viruse. •Global threat from biosafety level 4 pathogens. •Animal models for Nipah virus research.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.