Alejo Casal, Fernán Oscar Gizzi, Sol Agostina Figueroa, Tomás Denis Petitti, Facundo Ferragutti, Jimena Gaido, Mariano Alberto Torres Manno, Gabriel Céccoli, Luciana Paoletti, Christopher Dunlap, Lucas Damián Daurelio, Martín Espariz
{"title":"芽孢杆菌科抗真菌菌株提高小麦产量和烘焙品质。","authors":"Alejo Casal, Fernán Oscar Gizzi, Sol Agostina Figueroa, Tomás Denis Petitti, Facundo Ferragutti, Jimena Gaido, Mariano Alberto Torres Manno, Gabriel Céccoli, Luciana Paoletti, Christopher Dunlap, Lucas Damián Daurelio, Martín Espariz","doi":"10.1007/s00253-025-13544-9","DOIUrl":null,"url":null,"abstract":"<p><p>Soil microbial diversity degradation through agricultural intensification necessitates sustainable alternatives. This study employed genomic and phenotypic approaches to characterize wheat rhizosphere-associated Bacillaceae for agricultural applications. Initial screening of 576 sporulating isolates for antifungal activity against Fusarium graminearum, followed by RAPD analysis, identified 39 distinct genetic profiles, out of which 15 were classified in Bacillus amyloliquefaciens or Priestia megaterium groups by 16S RNA sequence. Whole-genome sequencing of selected strains enabled precise taxonomic classification and comprehensive trait prediction using in silico tools. Genomic mining revealed strain-specific distributions of beneficial traits, including antimicrobial compound production pathways and plant growth-promoting characteristics. Phenotypic validation confirmed key predicted traits while uncovering additional functionalities not detected in silico. Integration of kernel bioassays, pot experiments, and field trials identified Bacillus velezensis ZAV-W70 and P. megaterium ZAV-W64 as promising biofertilizer and biocontrol candidates, demonstrating enhanced yield without fungicides and improved bread-making quality, respectively. These findings highlight the value of combining genomic analysis with traditional screening methods for developing effective agricultural biologicals, contributing to sustainable wheat production practices. KEY POINTS: • Rhizosphere Bacillaceae strains show dual plant growth promotion and biocontrol • B. velezensis ZAV-W70 and P. megaterium ZAV-W64 increase wheat yield • ZAV-W64 increases bread-making quality including total gluten and alveograph W.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":"164"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality.\",\"authors\":\"Alejo Casal, Fernán Oscar Gizzi, Sol Agostina Figueroa, Tomás Denis Petitti, Facundo Ferragutti, Jimena Gaido, Mariano Alberto Torres Manno, Gabriel Céccoli, Luciana Paoletti, Christopher Dunlap, Lucas Damián Daurelio, Martín Espariz\",\"doi\":\"10.1007/s00253-025-13544-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil microbial diversity degradation through agricultural intensification necessitates sustainable alternatives. This study employed genomic and phenotypic approaches to characterize wheat rhizosphere-associated Bacillaceae for agricultural applications. Initial screening of 576 sporulating isolates for antifungal activity against Fusarium graminearum, followed by RAPD analysis, identified 39 distinct genetic profiles, out of which 15 were classified in Bacillus amyloliquefaciens or Priestia megaterium groups by 16S RNA sequence. Whole-genome sequencing of selected strains enabled precise taxonomic classification and comprehensive trait prediction using in silico tools. Genomic mining revealed strain-specific distributions of beneficial traits, including antimicrobial compound production pathways and plant growth-promoting characteristics. Phenotypic validation confirmed key predicted traits while uncovering additional functionalities not detected in silico. Integration of kernel bioassays, pot experiments, and field trials identified Bacillus velezensis ZAV-W70 and P. megaterium ZAV-W64 as promising biofertilizer and biocontrol candidates, demonstrating enhanced yield without fungicides and improved bread-making quality, respectively. These findings highlight the value of combining genomic analysis with traditional screening methods for developing effective agricultural biologicals, contributing to sustainable wheat production practices. KEY POINTS: • Rhizosphere Bacillaceae strains show dual plant growth promotion and biocontrol • B. velezensis ZAV-W70 and P. megaterium ZAV-W64 increase wheat yield • ZAV-W64 increases bread-making quality including total gluten and alveograph W.</p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"109 1\",\"pages\":\"164\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00253-025-13544-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-025-13544-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality.
Soil microbial diversity degradation through agricultural intensification necessitates sustainable alternatives. This study employed genomic and phenotypic approaches to characterize wheat rhizosphere-associated Bacillaceae for agricultural applications. Initial screening of 576 sporulating isolates for antifungal activity against Fusarium graminearum, followed by RAPD analysis, identified 39 distinct genetic profiles, out of which 15 were classified in Bacillus amyloliquefaciens or Priestia megaterium groups by 16S RNA sequence. Whole-genome sequencing of selected strains enabled precise taxonomic classification and comprehensive trait prediction using in silico tools. Genomic mining revealed strain-specific distributions of beneficial traits, including antimicrobial compound production pathways and plant growth-promoting characteristics. Phenotypic validation confirmed key predicted traits while uncovering additional functionalities not detected in silico. Integration of kernel bioassays, pot experiments, and field trials identified Bacillus velezensis ZAV-W70 and P. megaterium ZAV-W64 as promising biofertilizer and biocontrol candidates, demonstrating enhanced yield without fungicides and improved bread-making quality, respectively. These findings highlight the value of combining genomic analysis with traditional screening methods for developing effective agricultural biologicals, contributing to sustainable wheat production practices. KEY POINTS: • Rhizosphere Bacillaceae strains show dual plant growth promotion and biocontrol • B. velezensis ZAV-W70 and P. megaterium ZAV-W64 increase wheat yield • ZAV-W64 increases bread-making quality including total gluten and alveograph W.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.