{"title":"乙酰辅酶a合成酶RkACS1和RkACS2在克拉氏红孢子虫类胡萝卜素和脂类生物合成中的不同作用","authors":"Meixia He, Xiaoxia Yang, Chao Xiong, Yuxuan Gan, Hongjun Ma, Jingwen Qiu, Yuan Chen, Qi Zhang","doi":"10.1007/s00253-025-13534-x","DOIUrl":null,"url":null,"abstract":"<p><p>Red yeasts demonstrate considerable potential in industrial and biotechnological applications, particularly in the biosynthesis of carotenoids and lipids, which are valuable secondary metabolites with a wide range of applications. In the oleaginous red yeast Rhodosporidium kratochvilovae YM25235, the acetyl-CoA synthetases RkACS1 and RkACS2 play critical roles in converting acetate into acetyl-CoA, a key precursor for the synthesis of various metabolites, including carotenoids and lipids. This study explores the physiological functions and metabolic regulation of RkACS1 and RkACS2, revealing distinct roles for these isoenzymes in metabolic processes. RkACS1 is essential for utilizing non-fermentable carbon sources such as acetate, ethanol, and glycerol, exhibiting high affinity for acetate and being activated by acetate while inhibited by glucose. Additionally, RkACS1 is involved in carotenoid biosynthesis. In contrast, RkACS2, while not specific to particular carbon sources, is primarily involved in lipid and fatty acid synthesis. It also influences gene expression through histone acetylation in the nucleus. Notably, these two isoenzymes exhibit functional redundancy and mutual regulation. These findings provide valuable insights into the metabolic regulation of acetyl-CoA synthesis, offering a foundation for engineering strategies aimed at optimizing secondary metabolite production in oleaginous red yeasts. KEY POINTS: • RkACS1 is related to carotenoid biosynthesis and essential for non-fermentable carbon sources • RkACS2 supports lipid and fatty acid biosynthesis and regulates histone acetylation in the nucleus • Functional redundancy and mutual regulation exist between RkACS1 and RkACS2 isoenzymes.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":"140"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145312/pdf/","citationCount":"0","resultStr":"{\"title\":\"Divergent roles of the acetyl-CoA synthetases RkACS1 and RkACS2 in carotenoid and lipid biosynthesis in Rhodosporidium kratochvilovae.\",\"authors\":\"Meixia He, Xiaoxia Yang, Chao Xiong, Yuxuan Gan, Hongjun Ma, Jingwen Qiu, Yuan Chen, Qi Zhang\",\"doi\":\"10.1007/s00253-025-13534-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Red yeasts demonstrate considerable potential in industrial and biotechnological applications, particularly in the biosynthesis of carotenoids and lipids, which are valuable secondary metabolites with a wide range of applications. In the oleaginous red yeast Rhodosporidium kratochvilovae YM25235, the acetyl-CoA synthetases RkACS1 and RkACS2 play critical roles in converting acetate into acetyl-CoA, a key precursor for the synthesis of various metabolites, including carotenoids and lipids. This study explores the physiological functions and metabolic regulation of RkACS1 and RkACS2, revealing distinct roles for these isoenzymes in metabolic processes. RkACS1 is essential for utilizing non-fermentable carbon sources such as acetate, ethanol, and glycerol, exhibiting high affinity for acetate and being activated by acetate while inhibited by glucose. Additionally, RkACS1 is involved in carotenoid biosynthesis. In contrast, RkACS2, while not specific to particular carbon sources, is primarily involved in lipid and fatty acid synthesis. It also influences gene expression through histone acetylation in the nucleus. Notably, these two isoenzymes exhibit functional redundancy and mutual regulation. These findings provide valuable insights into the metabolic regulation of acetyl-CoA synthesis, offering a foundation for engineering strategies aimed at optimizing secondary metabolite production in oleaginous red yeasts. KEY POINTS: • RkACS1 is related to carotenoid biosynthesis and essential for non-fermentable carbon sources • RkACS2 supports lipid and fatty acid biosynthesis and regulates histone acetylation in the nucleus • Functional redundancy and mutual regulation exist between RkACS1 and RkACS2 isoenzymes.</p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"109 1\",\"pages\":\"140\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145312/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00253-025-13534-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-025-13534-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Divergent roles of the acetyl-CoA synthetases RkACS1 and RkACS2 in carotenoid and lipid biosynthesis in Rhodosporidium kratochvilovae.
Red yeasts demonstrate considerable potential in industrial and biotechnological applications, particularly in the biosynthesis of carotenoids and lipids, which are valuable secondary metabolites with a wide range of applications. In the oleaginous red yeast Rhodosporidium kratochvilovae YM25235, the acetyl-CoA synthetases RkACS1 and RkACS2 play critical roles in converting acetate into acetyl-CoA, a key precursor for the synthesis of various metabolites, including carotenoids and lipids. This study explores the physiological functions and metabolic regulation of RkACS1 and RkACS2, revealing distinct roles for these isoenzymes in metabolic processes. RkACS1 is essential for utilizing non-fermentable carbon sources such as acetate, ethanol, and glycerol, exhibiting high affinity for acetate and being activated by acetate while inhibited by glucose. Additionally, RkACS1 is involved in carotenoid biosynthesis. In contrast, RkACS2, while not specific to particular carbon sources, is primarily involved in lipid and fatty acid synthesis. It also influences gene expression through histone acetylation in the nucleus. Notably, these two isoenzymes exhibit functional redundancy and mutual regulation. These findings provide valuable insights into the metabolic regulation of acetyl-CoA synthesis, offering a foundation for engineering strategies aimed at optimizing secondary metabolite production in oleaginous red yeasts. KEY POINTS: • RkACS1 is related to carotenoid biosynthesis and essential for non-fermentable carbon sources • RkACS2 supports lipid and fatty acid biosynthesis and regulates histone acetylation in the nucleus • Functional redundancy and mutual regulation exist between RkACS1 and RkACS2 isoenzymes.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.