{"title":"In-vitro antibacterial and antibiofilm activities and in-silico analysis of a potent cyclic peptide from a novel Streptomyces sp. strain RG-5 against antibiotic-resistant and biofilm-forming pathogenic bacteria","authors":"El-Hadj Driche, Boubekeur Badji, Florence Mathieu, Abdelghani Zitouni","doi":"10.1007/s00203-024-04174-2","DOIUrl":"10.1007/s00203-024-04174-2","url":null,"abstract":"<div><p>The proliferation of multidrug-resistant and biofilm-forming pathogenic bacteria poses a serious threat to public health. The limited effectiveness of current antibiotics motivates the search for new antibacterial compounds. In this study, a novel strain, RG-5, was isolated from desert soil. This strain exhibited potent antibacterial and antibiofilm properties against multidrug-resistant and biofilm-forming pathogenic bacteria. Through phenotypical characterizations, 16S rRNA gene sequence and phylogenetic analysis, the strain was identified as <i>Streptomyces</i> pratensis with 99.8% similarity. The active compound, RG5-1, was extracted, purified by reverse phase silica column HPLC, identified by ESI-MS spectrometry, and confirmed by <sup>1</sup>H and <sup>13</sup>C NMR analysis as 2,5-Piperazinedione, 3,6-bis(2-methylpropyl), belonging to cyclic peptides. This compound showed interesting minimum inhibitory concentrations (MICs) of 04 to 15 µg/mL and minimum biofilm inhibitory concentrations (MBICs 50%) of ½ MIC against the tested bacteria. Its molecular mechanism of action was elucidated through a molecular docking study against five drug-protein targets. The results demonstrated that the compound RG5-1 has a strong affinity and interaction patterns with glucosamine-6-phosphate synthase at − 6.0 kcal/mol compared to reference inhibitor (− 5.4 kcal/mol), medium with penicillin-binding protein 1a (− 6.1 kcal/mol), and LasR regulator protein of quorum sensing (− 5.4 kcal/mol), confirming its antibacterial and antibiofilm activities. The compound exhibited minimal toxicity and favorable physicochemical and pharmacological properties. This is the first report that describes its production from <i>Streptomyces</i>, its activities against biofilm-forming and multidrug-resistant bacteria, and its mechanism of action. These findings indicate that 2,5-piperazinedione, 3,6-bis(2-methylpropyl) has the potential to be a promising lead compound in the treatment of antibiotic-resistant and biofilm-forming pathogens.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Janayita Biswa Sarma, Saurov Mahanta, Bhaben Tanti
{"title":"Maximizing microbial activity and synergistic interaction to boost biofuel production from lignocellulosic biomass","authors":"Janayita Biswa Sarma, Saurov Mahanta, Bhaben Tanti","doi":"10.1007/s00203-024-04172-4","DOIUrl":"10.1007/s00203-024-04172-4","url":null,"abstract":"<div><p>Addressing global environmental challenges and meeting the escalating energy demands stand as two pivotal issues in the current landscape. Lignocellulosic biomass emerges as a promising renewable bio-energy source capable of fulfilling the world’s energy requirements on a large scale. One of the most important steps in lowering reliance on fossil fuel and lessening environmental effect is turning lignocellulosic biomass into biofuel. As carbon–neutral substitutes for traditional fuel, biofuel offer a solution to environmental concerns compared to conventional fuel. Effective utilization of lignocellulosic biomass is imperative for sustainable development. Ongoing research focuses on exploring the potential of various microorganisms and their co-interactions to synthesize diverse biofuels from different starting materials, including lignocellulosic biomass. Co-culture techniques demonstrate resilience to nutrient scarcity and environmental fluctuations. By utilising a variety of carbon sources, microbes can enhance their adaptability to environmental stressors and potentially increase productivity through their symbiotic interactions. Furthermore, compared to single organism involvement, co-interactions allow faster execution of multistep processes. Lignocellulosic biomass serves as a primary substrate for pre-treatment, fermentation, and enzymatic hydrolysis processes. This review primarily delves into the pretreatment, enzymatic hydrolysis process and the biochemical pathways involved in converting lignocellulosic biomass into bioenergy.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials","authors":"Aroni Chatterjee, Rajni Khan, Triparna Mukherjee, Preity Pragnya Sahoo, Laxmi Narayan Tiwari, Basant Narain Singh, Rashmi Kumari, Anisha Kumari, Ankit Rai, Shashikant Ray","doi":"10.1007/s00203-024-04179-x","DOIUrl":"10.1007/s00203-024-04179-x","url":null,"abstract":"<div><p>Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashraf Sami Hassan AL-Hasabe, Ahmad Faizal Bin Abdull Razis, Nadiya Akmal Binti Baharum, Choo Yee Yu, Nurulfiza Mat Isa
{"title":"Production and characterization of bacterial cellulose synthesized by Enterobacter chuandaensis strain AEC using Phoenix dactylifera and Musa acuminata","authors":"Ashraf Sami Hassan AL-Hasabe, Ahmad Faizal Bin Abdull Razis, Nadiya Akmal Binti Baharum, Choo Yee Yu, Nurulfiza Mat Isa","doi":"10.1007/s00203-024-04182-2","DOIUrl":"10.1007/s00203-024-04182-2","url":null,"abstract":"<div><p>Bacterial cellulose (BC) is a biopolymer synthesized extracellularly by certain bacteria through the polymerization of glucose monomers. This study aimed to produce BC using <i>Enterobacter chuandaensis</i> with fruit extracts from <i>Phoenix dactylifera</i> (D) and <i>Musa acuminata</i> (M) as carbon sources. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) showed characteristic cellulose vibrations, while X-ray diffraction (XRD) identified distinct peaks at 15.34°, 19.98°, 22.58°, and 34.6°, confirming the cellulose structure. Whole-genome sequencing of <i>E. chuandaensis</i> identified key genes involved in BC production. The BC produced then exhibited a molecular weight of 1,857,804 g/mol, with yields of 2.8 g/L and 2.5 g/L for treatments D and M, respectively. The crystallinity index of the purified BC was 74.1, and <sup>13</sup>C NMR analysis confirmed the dominant cellulose Iα crystalline form. The BC showed high biocompatibility in cytotoxicity assays, with cell viability between 92% and 100%, indicating its potential for use in biomedical applications. This investigation represents the first report of BC production by <i>E. chuandaensis</i>, which promises a new avenue for sustainable and efficient BC synthesis using fruit extracts as carbon sources.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phenotypic heterogeneity in bacteria: the rise of antibiotic persistence, clinical implications, and therapeutic opportunities","authors":"Srimayee Pani, Saswat S. Mohapatra","doi":"10.1007/s00203-024-04173-3","DOIUrl":"10.1007/s00203-024-04173-3","url":null,"abstract":"<div><p>The rising incidence of antimicrobial resistance (AMR) and the diminishing antibiotics discovery pipeline have created an unprecedented scenario where minor infections could become untreatable. AMR phenomenon is genetically encoded, and various genetic determinants have been implicated in their emergence and spread. Nevertheless, several non-genetic phenomena are also involved in antibiotic treatment failure which requires a systematic investigation. It has been observed that in an isogenic population of bacteria, not all cells behave or respond the same way to an antibiotic, because of the inherent heterogeneity among them. This heterogeneity is not always heritable but rather phenotypic. Three distinct types of phenotypic heterogeneity, namely tolerance, persistence, and heteroresistance have been observed in bacteria having significant clinical implications influencing the treatment outcome. While tolerance is when a population can survive high doses of antibiotics without changing the minimum inhibitory concentration (MIC) of the drug, persistence occurs in a subpopulation of bacteria that can survive exposure to high antibiotic doses. In contrast, when a subpopulation shows a very high MIC in comparison to the rest of the population, the phenomenon is called heteroresistance. In this article, we have highlighted bacterial persistence with a focus on their emergence and the underlying molecular mechanisms. Moreover, we have tried to associate the genome-wide methylation status with that of the heterogeneity at a single-cell level that may explain the role of epigenetic mechanisms in the development of persistence.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nivedya Mohan, Kiran Bosco, Anmiya Peter, K. Abhitha, Sarita G. Bhat
{"title":"Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review","authors":"Nivedya Mohan, Kiran Bosco, Anmiya Peter, K. Abhitha, Sarita G. Bhat","doi":"10.1007/s00203-024-04168-0","DOIUrl":"10.1007/s00203-024-04168-0","url":null,"abstract":"<div><p>The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nur Shidaa Mohd Ali, Mohamad Syazwan Ngalimat, Mohd Zamri Saad, Mohammad Noor Amal Azmai, Annas Salleh, Zarirah Zulperi, Ina Salwany Md Yasin
{"title":"Stability characterizations of feed-based bivalent vaccine containing inactivated Streptococcus agalactiae and Aeromonas hydrophila against streptococcosis and Aeromonas infections in red hybrid tilapia (Oreochromis sp.)","authors":"Nur Shidaa Mohd Ali, Mohamad Syazwan Ngalimat, Mohd Zamri Saad, Mohammad Noor Amal Azmai, Annas Salleh, Zarirah Zulperi, Ina Salwany Md Yasin","doi":"10.1007/s00203-024-04166-2","DOIUrl":"10.1007/s00203-024-04166-2","url":null,"abstract":"<div><p>Feed-based bivalent vaccine (FBBV) containing killed whole organism (KWO) of <i>Streptococcus agalactiae</i> and <i>Aeromonas hydrophila</i> with 10% palm oil was previously proved to improve red hybrid tilapia’s (<i>Oreochromis</i> sp.) immunity against streptococcosis and <i>Aeromonas</i> infections. This study characterized the FBBV’s stability following the preparatory process and storage. The FBBV was prepared, and the KWO’s stability was determined microscopically and molecularly. The efficacy of FBBV stored at room temperature (25 ± 2 °C) for 0, 30 and 60 days was investigated in red hybrid tilapia. The results indicated the addition of palm oil was not affecting the KWO’s structure and helping in the FBBV’s pelletization. In 1 g of FBBV contained 1.5 × 10<sup>9</sup> CFU/g of <i>S. agalactiae</i> and 4.9 × 10<sup>9</sup> CFU/g of <i>A. hydrophila</i>, respectively, even after 60 days of storage at room temperature. The KWO’s structure in FBBV was not affected following in vitro acidic tolerance analysis, as noted from light and electron microscopies. The FBBV’s carbohydrate, energy, moisture, total protein and total ash contents remained stable at 95% after 60 days of storage at room temperature, while the KWO’s concentration was slightly reduced to 83.3% for <i>S. agalactiae</i> (1.25 × 10<sup>9</sup> CFU/g) and 80.6% for <i>A. hydrophila</i> (3.85 × 10<sup>9</sup> CFU/g), respectively. Fish vaccinated with FBBV that was stored for 0, 30 and 60 days did not show any significant differences (<i>p</i> ≥ 0.05) in the relative percent survival when challenged with pathogenic <i>Streptococcus</i> spp. and <i>Aeromonas</i> spp. These findings suggested that the FBBV is a stable vaccine, which underscores its potential application as aquatic vaccines in aquaculture.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Liu, Yuzhang Zhu, Jiahui Wang, Xiangyu Hong, Mi Liu, Chaonan Kong, Rui Zhou, Xianke Li, Lifang Yang
{"title":"Antibacterial effects and mechanisms of quercetin-β-cyclodextrin complex mediated photodynamic on Escherichia coli O157:H7","authors":"Tao Liu, Yuzhang Zhu, Jiahui Wang, Xiangyu Hong, Mi Liu, Chaonan Kong, Rui Zhou, Xianke Li, Lifang Yang","doi":"10.1007/s00203-024-04175-1","DOIUrl":"10.1007/s00203-024-04175-1","url":null,"abstract":"<div><p>Quercetin is a natural flavonoid with antioxidant, anti-inflammatory, and antibacterial properties. This work aimed to formulate quercetin-cyclodextrin microcapsules (QT-β-CD) while examining their photodynamic antibacterial effects and underlying mechanisms in detail. Characterization of the QT-β-CD was conducted using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The bacteriostatic effects of UV-A irradiation on <i>Escherichia coli</i> O157:H7 (<i>E. coli</i> O157:H7) were investigated. The photodynamic impact of QT-β-CD was assessed by analyzing hydrogen peroxide (H₂O₂) production. The antimicrobial activity was further elucidated through examinations of cell membrane integrity, protein damage, changes in cellular motility, biofilm formation, and extracellular polysaccharide reduction. The effect of QT-β-CD on <i>LuxS</i> and <i>motA</i> gene expression in <i>E. coli</i> O157:H7 was investigated by RT-qPCR. The findings demonstrated that QT-β-CD exhibited potent photodynamic properties and functioned as an efficient photosensitizer, causing substantial damage to <i>E. coli</i> O157:H7 cells. These results underscore the potential of quercetin as an antimicrobial agent for food preservation.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Periyasamy Sivalingam, Maheswaran Easwaran, Dhanraj Ganapathy, S. Farook Basha, John Poté
{"title":"Endophytic Streptomyces: an underexplored source with potential for novel natural drug discovery and development","authors":"Periyasamy Sivalingam, Maheswaran Easwaran, Dhanraj Ganapathy, S. Farook Basha, John Poté","doi":"10.1007/s00203-024-04169-z","DOIUrl":"10.1007/s00203-024-04169-z","url":null,"abstract":"<div><p><i>Streptomyces</i> has long been considered as key sources for natural compounds discovery in medicine and agriculture. These compounds have been demonstrated to possess different biological activities, including antibiotic, antifungal, anticancer, and antiviral effects. As a result, new pharmaceuticals and antibiotics have been developed. Nevertheless, there have been only a few novel discoveries of bioactive compounds in the past decades from <i>Streptomyces</i> in natural habitats. There is, therefore, now a renewed search for new <i>Streptomyces</i> species having the potential to produce many compounds from one strain in lesser explored natural habitats that may be helpful in fighting diseases. Consequently, modern genome mining approaches are imperative for discovering structurally novel natural compounds with therapeutic applications from untapped sources. In light of these facts, endophytic <i>Streptomyces</i> from plants may offer new avenues for the discovery of bioactive compounds with distinctive chemical properties and activities. In the present review, we present the progress made in isolating natural compounds from endophytic <i>Streptomyces</i> originating from plants which have remarkable antimicrobial, cytotoxic, and antifungal properties. A different of distinct structural classes of compounds were reported from endophytic <i>Streptomyces</i>, such as indolosequiterpene, macrolides, flavones, peptides, naphthoquinones, and terpenoids. Further, we discussed modern genomics progress in finding biosynthetic gene clusters (BGCs) encoding compounds. Overall, this review might provide valuable insights into the potential for novel drug discovery from untapped endophytic <i>Streptomyces</i> in the future.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Omic-driven strategies to unveil microbiome potential for biodegradation of plastics: a review","authors":"Shafana Farveen Mohamed, Rajnish Narayanan","doi":"10.1007/s00203-024-04165-3","DOIUrl":"10.1007/s00203-024-04165-3","url":null,"abstract":"<div><p>Plastic waste accumulation has lately been identified as the leading and pervasive environmental concern, harming all living beings, natural habitats, and the global market. Given this issue, developing ecologically friendly solutions, such as biodegradation instead of standard disposal, is critical. To effectively address and develop better strategies, it is critical to understand the inter-relationship between microorganisms and plastic, the role of genes and enzymes involved in this process. However, the complex nature of microbial communities and the diverse mechanisms involved in plastic biodegradation have hindered the development of efficient plastic waste degradation strategies. Omics-driven approaches, encompassing genomics, transcriptomics and proteomics have revolutionized our understanding of microbial ecology and biotechnology. Therefore, this review explores the application of omics technologies in plastic degradation studies and discusses the key findings, challenges, and future prospects of omics-based approaches in identifying novel plastic-degrading microorganisms, enzymes, and metabolic pathways. The integration of omics technologies with advanced molecular technologies such as the recombinant DNA technology and synthetic biology would guide in the optimization of microbial consortia and engineering the microbial systems for enhanced plastic biodegradation under various environmental conditions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}