Kojiro Ito, Mana Adachi, Minenosuke Matsutani, Ryota Kataoka, Gen Enomoto, Akinobu Kajikawa, Kenji Yokota
{"title":"Characterization of the NRPS operon homolog for surfactin A and surfactin C synthesis in Bacillus spp.","authors":"Kojiro Ito, Mana Adachi, Minenosuke Matsutani, Ryota Kataoka, Gen Enomoto, Akinobu Kajikawa, Kenji Yokota","doi":"10.1007/s00203-025-04341-z","DOIUrl":null,"url":null,"abstract":"<p><p>Surfactin is a cyclic lipopeptide produced by Bacillus spp., consisting of a β-hydroxy fatty acid and a heptapeptide synthesized by non-ribosomal peptide synthetases. Surfactin congeners (A, B, and C) differ in amino acid substitutions, with Leu7 in surfactin A replaced by Val in B and Ile in C. Our LC-MS analysis revealed that the elution profiles of surfactin-producing strains could be classified into two distinct patterns under identical culture conditions, corresponding to surfactin A and C production. This suggests that endogenous factors influence surfactin production. Therefore, we aimed to identify the genetic factor that regulates surfactin congener production. The srfA operon for surfactin A biosynthesis in B. subtilis, composed of four open reading frames (ORFs), is srfAABCD. Comparative genomic analysis between the B. subtilis JCM 1465 srfA operon and the TUA12 surfactin biosynthesis genes examined in this study revealed that the operon responsible for surfactin A biosynthesis is distinct, exhibiting 68.7%, 69.2%, 84.7%, and 67.4% homology with the four ORFs, respectively. Similarly, the operon for Ptrs2 surfactin C biosynthesis showed 68.7%, 69.2%, 64.4%, and 67.1% homology. These differences indicate that the identified surfactin A and C biosynthetic operons are novel genetic variants. Further analysis identified the adenylation domain responsible for selecting Ile7 in surfactin C via domain substitution in a surfactin A-producing strain. Average nucleotide identity analysis showed that the surfactin A and C operons were found in B. velezensis and B. amyloliquefaciens, respectively. Our findings suggest that surfactin congener production is species-dependent, with the srf operon specifically distributed in Bacillus spp.</p>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 7","pages":"161"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00203-025-04341-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Surfactin is a cyclic lipopeptide produced by Bacillus spp., consisting of a β-hydroxy fatty acid and a heptapeptide synthesized by non-ribosomal peptide synthetases. Surfactin congeners (A, B, and C) differ in amino acid substitutions, with Leu7 in surfactin A replaced by Val in B and Ile in C. Our LC-MS analysis revealed that the elution profiles of surfactin-producing strains could be classified into two distinct patterns under identical culture conditions, corresponding to surfactin A and C production. This suggests that endogenous factors influence surfactin production. Therefore, we aimed to identify the genetic factor that regulates surfactin congener production. The srfA operon for surfactin A biosynthesis in B. subtilis, composed of four open reading frames (ORFs), is srfAABCD. Comparative genomic analysis between the B. subtilis JCM 1465 srfA operon and the TUA12 surfactin biosynthesis genes examined in this study revealed that the operon responsible for surfactin A biosynthesis is distinct, exhibiting 68.7%, 69.2%, 84.7%, and 67.4% homology with the four ORFs, respectively. Similarly, the operon for Ptrs2 surfactin C biosynthesis showed 68.7%, 69.2%, 64.4%, and 67.1% homology. These differences indicate that the identified surfactin A and C biosynthetic operons are novel genetic variants. Further analysis identified the adenylation domain responsible for selecting Ile7 in surfactin C via domain substitution in a surfactin A-producing strain. Average nucleotide identity analysis showed that the surfactin A and C operons were found in B. velezensis and B. amyloliquefaciens, respectively. Our findings suggest that surfactin congener production is species-dependent, with the srf operon specifically distributed in Bacillus spp.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.