{"title":"Genomic and transcriptomic insights into the cellulose-degrading mechanism of Bacillus subtilis DC-11 and its novel cellulose catabolic pathway.","authors":"Chen Chen, Minqi Zhang, Yuanhao Zhang, Xueping Jiang, Jia Kong, Jieling Zhou, Gaiqun Huang, Ran Zhang, Hao Li, Zhongzheng Gui","doi":"10.1007/s00203-025-04356-6","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of silkworm excrement poses a significant environmental challenge, contributing to pollution and resource squandering. Unraveling the novel mechanism governing bacterial cellulose degradation represents a vital avenue for augmenting cellulose conversion efficiency. This study investigated the cultivation of Bacillus subtilis DC-11 with different carbon sources, utilizing transcriptome sequencing to identify metabolic pathways and differentially expressed genes (DEGs) closely related to cellulose degradation. Transcriptome analysis revealed 3,917 DEGs between the carboxymethyl cellulose sodium (CMC-Na) treatment group and the glucose-supplemented (GLU) control group. Compared to the control group, the CMC-Na treatment group exhibited upregulation of 942 genes, while 1,996 genes were downregulated. KEGG pathway analysis of DEGs indicated the involvement of that carbohydrate metabolism and phosphotransferase system (PTS) pathways in response to cellulose degradation. Real-time quantitative PCR validation confirmed that the expressions of key genes, namely ytoP, bglH, gmuD, licH, licC, ywbA, licA, gmuA, and gmuB, associated with the PTS pathway were consistent with the transcriptomics data. These results suggest that B. subtilis DC-11 degrades cellulose via carbohydrate metabolism and PTS pathways. This study offers new insights into the cellulose metabolism pathway of B. subtilis DC-11, providing both a theoretical basis and innovative strategies for the efficient degradation of cellulose.</p>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 7","pages":"158"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00203-025-04356-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The accumulation of silkworm excrement poses a significant environmental challenge, contributing to pollution and resource squandering. Unraveling the novel mechanism governing bacterial cellulose degradation represents a vital avenue for augmenting cellulose conversion efficiency. This study investigated the cultivation of Bacillus subtilis DC-11 with different carbon sources, utilizing transcriptome sequencing to identify metabolic pathways and differentially expressed genes (DEGs) closely related to cellulose degradation. Transcriptome analysis revealed 3,917 DEGs between the carboxymethyl cellulose sodium (CMC-Na) treatment group and the glucose-supplemented (GLU) control group. Compared to the control group, the CMC-Na treatment group exhibited upregulation of 942 genes, while 1,996 genes were downregulated. KEGG pathway analysis of DEGs indicated the involvement of that carbohydrate metabolism and phosphotransferase system (PTS) pathways in response to cellulose degradation. Real-time quantitative PCR validation confirmed that the expressions of key genes, namely ytoP, bglH, gmuD, licH, licC, ywbA, licA, gmuA, and gmuB, associated with the PTS pathway were consistent with the transcriptomics data. These results suggest that B. subtilis DC-11 degrades cellulose via carbohydrate metabolism and PTS pathways. This study offers new insights into the cellulose metabolism pathway of B. subtilis DC-11, providing both a theoretical basis and innovative strategies for the efficient degradation of cellulose.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.