David A Hartmann, Vanessa Coelho-Santos, Andy Y Shih
{"title":"Pericyte Control of Blood Flow Across Microvascular Zones in the Central Nervous System.","authors":"David A Hartmann, Vanessa Coelho-Santos, Andy Y Shih","doi":"10.1146/annurev-physiol-061121-040127","DOIUrl":"https://doi.org/10.1146/annurev-physiol-061121-040127","url":null,"abstract":"<p><p>The vast majority of the brain's vascular length is composed of capillaries, where our understanding of blood flow control remains incomplete. This review synthesizes current knowledge on the control of blood flow across microvascular zones by addressing issues with nomenclature and drawing on new developments from in vivo optical imaging and single-cell transcriptomics. Recent studies have highlighted important distinctions in mural cell morphology, gene expression, and contractile dynamics, which can explain observed differences in response to vasoactive mediators between arteriole, transitional, and capillary zones. Smooth muscle cells of arterioles and ensheathing pericytes of the arteriole-capillary transitional zone control large-scale, rapid changes in blood flow. In contrast, capillary pericytes downstream of the transitional zone act on slower and smaller scales and are involved in establishing resting capillary tone and flow heterogeneity. Many unresolved issues remain, including the vasoactive mediators that activate the different pericyte types in vivo, the role of pericyte-endothelial communication in conducting signals from capillaries to arterioles, and how neurological disease affects these mechanisms.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"331-354"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480047/pdf/nihms-1928192.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10164449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2022-02-10Epub Date: 2021-11-01DOI: 10.1146/annurev-physiol-061121-035838
Derek W Russell, Kristopher R Genschmer, J Edwin Blalock
{"title":"Extracellular Vesicles as Central Mediators of COPD Pathophysiology.","authors":"Derek W Russell, Kristopher R Genschmer, J Edwin Blalock","doi":"10.1146/annurev-physiol-061121-035838","DOIUrl":"10.1146/annurev-physiol-061121-035838","url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD) is a complex, heterogeneous, smoking-related disease of significant global impact. The complex biology of COPD is ultimately driven by a few interrelated processes, including proteolytic tissue remodeling, innate immune inflammation, derangements of the host-pathogen response, aberrant cellular phenotype switching, and cellular senescence, among others. Each of these processes are engendered and perpetuated by cells modulating their environment or each other. Extracellular vesicles (EVs) are powerful effectors that allow cells to perform a diverse array of functions on both adjacent and distant tissues, and their pleiotropic nature is only beginning to be appreciated. As such, EVs are candidates to play major roles in these fundamental mechanisms of disease behind COPD. Furthermore, some such roles for EVs are already established, and EVs are implicated in significant aspects of COPD pathogenesis. Here, we discuss known and potential ways that EVs modulate the environment of their originating cells to contribute to the processes that underlie COPD.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"631-654"},"PeriodicalIF":15.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831481/pdf/nihms-1769489.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9511220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of physiologyPub Date : 2022-02-10Epub Date: 2021-11-15DOI: 10.1146/annurev-physiol-052521-121810
Jose A Munoz, Anne-Catrin Uhlemann, Jonathan Barasch
{"title":"Innate Bacteriostatic Mechanisms Defend the Urinary Tract.","authors":"Jose A Munoz, Anne-Catrin Uhlemann, Jonathan Barasch","doi":"10.1146/annurev-physiol-052521-121810","DOIUrl":"10.1146/annurev-physiol-052521-121810","url":null,"abstract":"<p><p>Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"533-558"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185666/pdf/nihms-1811822.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10288466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AMPK and the Adaptation to Exercise.","authors":"Hannah R Spaulding, Zhen Yan","doi":"10.1146/annurev-physiol-060721-095517","DOIUrl":"https://doi.org/10.1146/annurev-physiol-060721-095517","url":null,"abstract":"<p><p>Noncommunicable diseases are chronic diseases that contribute to death worldwide, but these diseases can be prevented and mitigated with regular exercise. Exercise activates signaling molecules and the transcriptional network to promote physiological adaptations, such as fiber type transformation, angiogenesis, and mitochondrial biogenesis. AMP-activated protein kinase (AMPK) is a master regulator that senses the energy state, promotes metabolism for glucose and fatty acid utilization, and mediates beneficial cellular adaptations in many vital tissues and organs. This review focuses on the current, integrative understanding of the role of exercise-induced activation of AMPK in the regulation of system metabolism and promotion of health benefits.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"209-227"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919726/pdf/nihms-1785132.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10743690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joanna M Wardlaw, Helene Benveniste, Anna Williams
{"title":"Cerebral Vascular Dysfunctions Detected in Human Small Vessel Disease and Implications for Preclinical Studies.","authors":"Joanna M Wardlaw, Helene Benveniste, Anna Williams","doi":"10.1146/annurev-physiol-060821-014521","DOIUrl":"https://doi.org/10.1146/annurev-physiol-060821-014521","url":null,"abstract":"<p><p>Cerebral small vessel disease (SVD) is highly prevalent and a common cause of ischemic and hemorrhagic stroke and dementia, yet the pathophysiology is poorly understood. Its clinical expression is highly varied, and prognostic implications are frequently overlooked in clinics; thus, treatment is currently confined to vascular risk factor management. Traditionally, SVD is considered the small vessel equivalent of large artery stroke (occlusion, rupture), but data emerging from human neuroimaging and genetic studies refute this, instead showing microvessel endothelial dysfunction impacting on cell-cell interactions and leading to brain damage. These dysfunctions reflect defects that appear to be inherited and secondary to environmental exposures, including vascular risk factors. Interrogation in preclinical models shows consistent and converging molecular and cellular interactions across the endothelial-glial-neural unit that increasingly explain the human macroscopic observations and identify common patterns of pathology despite different triggers. Importantly, these insights may offer new targets for therapeutic intervention focused on restoring endothelial-glial physiology.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"409-434"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9311507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Cellular and Molecular Basis of Sour Taste.","authors":"Heather N Turner, Emily R Liman","doi":"10.1146/annurev-physiol-060121-041637","DOIUrl":"https://doi.org/10.1146/annurev-physiol-060121-041637","url":null,"abstract":"<p><p>Sour taste, the taste of acids, is one of the most enigmatic of the five basic taste qualities; its function is unclear and its receptor was until recently unknown. Sour tastes are transduced in taste buds on the tongue and palate epithelium by a subset of taste receptor cells, known as type III cells. Type III cells express a number of unique markers, which allow for their identification and manipulation. These cells respond to acid stimuli with action potentials and release neurotransmitters onto afferent nerve fibers, with cell bodies in geniculate and petrosal ganglia. Here, we review classical studies of sour taste leading up to the identification of the sour receptor as the proton channel OTOP1.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"41-58"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191257/pdf/nihms-1886150.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9480165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondrial H<sup>+</sup> Leak and Thermogenesis.","authors":"Ambre M Bertholet, Yuriy Kirichok","doi":"10.1146/annurev-physiol-021119-034405","DOIUrl":"https://doi.org/10.1146/annurev-physiol-021119-034405","url":null,"abstract":"<p><p>Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H<sup>+</sup> leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H<sup>+</sup> leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H<sup>+</sup> leak.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"381-407"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976115/pdf/nihms-1789380.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10690724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Epigenetic Signatures and Plasticity of Intestinal and Other Stem Cells.","authors":"Madhurima Saxena, Ramesh A Shivdasani","doi":"10.1146/annurev-physiol-021119-034520","DOIUrl":"https://doi.org/10.1146/annurev-physiol-021119-034520","url":null,"abstract":"<p><p>The cardinal properties of adult tissue stem cells are self-renewal and the ability to generate diverse resident cell types. The daily losses of terminally differentiated intestinal, skin, and blood cells require \"professional\" stem cells to produce replacements. This occurs by continuous expansion of stem cells and their immediate progeny, followed by coordinated activation of divergent transcriptional programs to generate stable cells with diverse functions. Other tissues turn over slowly, if at all, and vary widely in strategies for facultative stem cell activity or interconversion among mature resident cell types (transdifferentiation). Cell fate potential is programmed in tissue-specific configurations of chromatin, which restrict the complement of available genes and <i>cis-</i>regulatory elements, hence allowing specific cell types to arise. Using as a model the transcriptional and chromatin basis of cell differentiation and dedifferentiation in intestinal crypts, we discuss here how self-renewing and other tissues execute homeostatic and injury-responsive stem cell activity.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"83 ","pages":"405-427"},"PeriodicalIF":18.2,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-physiol-021119-034520","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9560834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function.","authors":"Volker Vallon, Subodh Verma","doi":"10.1146/annurev-physiol-031620-095920","DOIUrl":"https://doi.org/10.1146/annurev-physiol-031620-095920","url":null,"abstract":"<p><p>SGLT2 inhibitors are antihyperglycemic drugs that protect kidneys and the heart of patients with or without type 2 diabetes and preserved or reduced kidney function from failing. The involved protective mechanisms include blood glucose-dependent and -independent mechanisms: SGLT2 inhibitors prevent both hyper- and hypoglycemia, with expectedly little net effect on HbA1C. Metabolic adaptations to induced urinary glucose loss include reduced fat mass and more ketone bodies as additional fuel. SGLT2 inhibitors lower glomerular capillary hypertension and hyperfiltration, thereby reducing the physical stress on the filtration barrier, albuminuria, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity, may preserve tubular function and glomerular filtration rate in the long term. SGLT2 inhibitors may mimic systemic hypoxia and stimulate erythropoiesis, which improves organ oxygen delivery. SGLT2 inhibitors are proximal tubule and osmotic diuretics that reduce volume retention and blood pressure and preserve heart function, potentially in part by overcoming the resistance to diuretics and atrial-natriuretic-peptide and inhibiting Na-H exchangers and sympathetic tone.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"83 ","pages":"503-528"},"PeriodicalIF":18.2,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-physiol-031620-095920","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10292438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulation of Mitochondrial Ca<sup>2+</sup> Uptake.","authors":"Elizabeth Murphy, Charles Steenbergen","doi":"10.1146/annurev-physiol-031920-092419","DOIUrl":"https://doi.org/10.1146/annurev-physiol-031920-092419","url":null,"abstract":"<p><p>Mitochondria are responsible for ATP production but are also known as regulators of cell death, and mitochondrial matrix Ca<sup>2+</sup> is a key modulator of both ATP production and cell death. Although mitochondrial Ca<sup>2+</sup> uptake and efflux have been studied for over 50 years, it is only in the past decade that the proteins responsible for mitochondrial Ca<sup>2+</sup> uptake and efflux have been identified. The identification of the mitochondrial Ca<sup>2+</sup> uniporter (MCU) led to an explosion of studies identifying regulators of the MCU. The levels of these regulators vary in a tissue- and disease-specific manner, providing new insight into how mitochondrial Ca<sup>2+</sup> is regulated. This review focuses on the proteins responsible for mitochondrial transport and what we have learned from mouse studies with genetic alterations in these proteins.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"83 ","pages":"107-126"},"PeriodicalIF":18.2,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-physiol-031920-092419","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10451474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}