Annual review of physiology最新文献

筛选
英文 中文
Sepsis-Induced Immunosuppression. Sepsis-Induced免疫抑制。
IF 18.2 1区 医学
Annual review of physiology Pub Date : 2022-02-10 Epub Date: 2021-10-27 DOI: 10.1146/annurev-physiol-061121-040214
Lisa K Torres, Peter Pickkers, Tom van der Poll
{"title":"Sepsis-Induced Immunosuppression.","authors":"Lisa K Torres,&nbsp;Peter Pickkers,&nbsp;Tom van der Poll","doi":"10.1146/annurev-physiol-061121-040214","DOIUrl":"https://doi.org/10.1146/annurev-physiol-061121-040214","url":null,"abstract":"<p><p>Sepsis is expected to have a substantial impact on public health and cost as its prevalence increases. Factors contributing to increased prevalence include a progressively aging population, advances in the use of immunomodulatory agents to treat a rising number of diseases, and immune-suppressing therapies in organ transplant recipients and cancer patients. It is now recognized that sepsis is associated with profound and sustained immunosuppression, which has been implicated as a predisposing factor in the increased susceptibility of patients to secondary infections and mortality. In this review, we discuss mechanisms of sepsis-induced immunosuppression and biomarkers that identify a state of impaired immunity. We also highlight immune-enhancing strategies that have been evaluated in patients with sepsis, as well as therapeutics under current investigation. Finally, we describe future challenges and the need for a new treatment paradigm, integrating predictive enrichment with patient factors that may guide the future selection of tailored immunotherapy.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"157-181"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39562755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 57
Mechanisms Underlying Calcium Nephrolithiasis. 钙性肾结石的机制。
IF 18.2 1区 医学
Annual review of physiology Pub Date : 2022-02-10 Epub Date: 2021-10-26 DOI: 10.1146/annurev-physiol-052521-121822
R T Alexander, D G Fuster, H Dimke
{"title":"Mechanisms Underlying Calcium Nephrolithiasis.","authors":"R T Alexander,&nbsp;D G Fuster,&nbsp;H Dimke","doi":"10.1146/annurev-physiol-052521-121822","DOIUrl":"https://doi.org/10.1146/annurev-physiol-052521-121822","url":null,"abstract":"<p><p>Nephrolithiasis is a worldwide problem with increasing prevalence, enormous costs, and significant morbidity. Calcium-containing kidney stones are by far the most common kidney stones encountered in clinical practice, and thus, hypercalciuria is the greatest risk factor for kidney stone formation. Hypercalciuria can result from enhanced intestinal absorption, increased bone resorption, or altered renal tubular transport. Kidney stone formation is complex and driven by high concentrations of calcium-oxalate or calcium-phosphate in the urine. After discussing the mechanism mediating renal calcium salt precipitation, we review recent discoveries in renal tubular calcium transport from the proximal tubule, thick ascending limb, and distal convolution. Furthermore, we address how calcium is absorbed from the intestine and mobilized from bone. The effect of acidosis on bone calcium resorption and urinary calcium excretion is also considered. Although recent discoveries provide insight into these processes, much remains to be understood in order to provide improved therapies for hypercalciuria and prevent kidney stone formation.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"559-583"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39558539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Cardiac Transverse Tubules in Physiology and Heart Failure. 心脏横小管生理学和心力衰竭。
IF 15.7 1区 医学
Annual review of physiology Pub Date : 2022-02-10 Epub Date: 2021-11-15 DOI: 10.1146/annurev-physiol-061121-040148
Katharine M Dibb, William E Louch, Andrew W Trafford
{"title":"Cardiac Transverse Tubules in Physiology and Heart Failure.","authors":"Katharine M Dibb, William E Louch, Andrew W Trafford","doi":"10.1146/annurev-physiol-061121-040148","DOIUrl":"10.1146/annurev-physiol-061121-040148","url":null,"abstract":"<p><p>In mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca<sup>2+</sup> release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function. Indeed, t-tubules are now understood to support dynamic regulation of the heartbeat across a range of timescales, during all stages of life, in both health and disease. This review article aims to summarize these concepts, with consideration given to emerging t-tubule regulators and their targeting in future therapies.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"229-255"},"PeriodicalIF":15.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10300726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alcohol-Associated Tissue Injury: Current Views on Pathophysiological Mechanisms. 酒精相关组织损伤:病理生理机制的最新观点。
IF 15.7 1区 医学
Annual review of physiology Pub Date : 2022-02-10 DOI: 10.1146/annurev-physiol-060821-014008
Liz Simon, Flavia M Souza-Smith, Patricia E Molina
{"title":"Alcohol-Associated Tissue Injury: Current Views on Pathophysiological Mechanisms.","authors":"Liz Simon, Flavia M Souza-Smith, Patricia E Molina","doi":"10.1146/annurev-physiol-060821-014008","DOIUrl":"10.1146/annurev-physiol-060821-014008","url":null,"abstract":"<p><p>At-risk alcohol use is a major contributor to the global health care burden and leads to preventable deaths and diseases including alcohol addiction, alcoholic liver disease, cardiovascular disease, diabetes, traumatic injuries, gastrointestinal diseases, cancers, and fetal alcohol syndrome. Excessive and frequent alcohol consumption has increasingly been linked to alcohol-associated tissue injury and pathophysiology, which have significant adverse effects on multiple organ systems. Extensive research in animal and in vitro models has elucidated the salient mechanisms involved in alcohol-induced tissue and organ injury. In some cases, these pathophysiological mechanisms are shared across organ systems. The major alcohol- and alcohol metabolite-mediated mechanisms include oxidative stress, inflammation and immunometabolic dysregulation, gut leak and dysbiosis, cell death, extracellular matrix remodeling, endoplasmic reticulum stress, mitochondrial dysfunction, and epigenomic modifications. These mechanisms are complex and interrelated, and determining the interplay among them will make it possible to identify how they synergistically or additively interact to cause alcohol-mediated multiorgan injury. In this article, we review the current understanding of pathophysiological mechanisms involved in alcohol-induced tissue injury.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"87-112"},"PeriodicalIF":15.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10613279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Running the Female Power Grid Across Lifespan Through Brain Estrogen Signaling. 通过大脑雌激素信号在整个生命周期运行女性电网
IF 15.7 1区 医学
Annual review of physiology Pub Date : 2022-02-10 Epub Date: 2021-11-15 DOI: 10.1146/annurev-physiol-061121-035914
Holly A Ingraham, Candice B Herber, William C Krause
{"title":"Running the Female Power Grid Across Lifespan Through Brain Estrogen Signaling.","authors":"Holly A Ingraham, Candice B Herber, William C Krause","doi":"10.1146/annurev-physiol-061121-035914","DOIUrl":"10.1146/annurev-physiol-061121-035914","url":null,"abstract":"<p><p>The role of central estrogen in cognitive, metabolic, and reproductive health has long fascinated the lay public and scientists alike. In the last two decades, insight into estrogen signaling in the brain and its impact on female physiology is beginning to catch up with the vast information already established for its actions on peripheral tissues. Using newer methods to manipulate estrogen signaling in hormone-sensitive brain regions, neuroscientists are now identifying the molecular pathways and neuronal subtypes required for controlling sex-dependent energy allocation. However, the immense cellular complexity of these hormone-sensitive brain regions makes it clear that more research is needed to fully appreciate how estrogen modulates neural circuits to regulate physiological and behavioral end points. Such insight is essential for understanding how natural or drug-induced hormone fluctuations across lifespan affect women's health.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"59-85"},"PeriodicalIF":15.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831472/pdf/nihms-1771780.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10682557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiomyocyte Microtubules: Control of Mechanics, Transport, and Remodeling. 心肌细胞微管:控制力学、运输和重塑。
IF 15.7 1区 医学
Annual review of physiology Pub Date : 2022-02-10 Epub Date: 2021-10-06 DOI: 10.1146/annurev-physiol-062421-040656
Keita Uchida, Emily A Scarborough, Benjamin L Prosser
{"title":"Cardiomyocyte Microtubules: Control of Mechanics, Transport, and Remodeling.","authors":"Keita Uchida, Emily A Scarborough, Benjamin L Prosser","doi":"10.1146/annurev-physiol-062421-040656","DOIUrl":"10.1146/annurev-physiol-062421-040656","url":null,"abstract":"<p><p>Microtubules are essential cytoskeletal elements found in all eukaryotic cells. The structure and composition of microtubules regulate their function, and the dynamic remodeling of the network by posttranslational modifications and microtubule-associated proteins generates diverse populations of microtubules adapted for various contexts. In the cardiomyocyte, the microtubules must accommodate the unique challenges faced by a highly contractile, rigidly structured, and long-lasting cell. Through their canonical trafficking role and positioning of mRNA, proteins, and organelles, microtubules regulate essential cardiomyocyte functions such as electrical activity, calcium handling, protein translation, and growth. In a more specialized role, posttranslationally modified microtubules form load-bearing structures that regulate myocyte mechanics and mechanotransduction. Modified microtubules proliferate in cardiovascular diseases, creating stabilized resistive elements that impede cardiomyocyte contractility and contribute to contractile dysfunction. In this review, we highlight the most exciting new concepts emerging from recent studies into canonical and noncanonical roles of cardiomyocyte microtubules.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"257-283"},"PeriodicalIF":15.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097619/pdf/nihms-1800999.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9482095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological Functions of CRAC Channels. CRAC通道的生理功能。
IF 18.2 1区 医学
Annual review of physiology Pub Date : 2022-02-10 Epub Date: 2021-10-12 DOI: 10.1146/annurev-physiol-052521-013426
Scott M Emrich, Ryan E Yoast, Mohamed Trebak
{"title":"Physiological Functions of CRAC Channels.","authors":"Scott M Emrich,&nbsp;Ryan E Yoast,&nbsp;Mohamed Trebak","doi":"10.1146/annurev-physiol-052521-013426","DOIUrl":"10.1146/annurev-physiol-052521-013426","url":null,"abstract":"<p><p>Store-operated Ca<sup>2+</sup> entry (SOCE) is a ubiquitous Ca<sup>2+</sup> signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca<sup>2+</sup> stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca<sup>2+</sup> release-activated Ca<sup>2+</sup> (CRAC) channels, which are highly Ca<sup>2+</sup> selective. Upon store depletion, the ER Ca<sup>2+</sup>-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"355-379"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10219792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Pericyte Control of Blood Flow Across Microvascular Zones in the Central Nervous System. 周细胞对中枢神经系统微血管区血流的控制。
IF 18.2 1区 医学
Annual review of physiology Pub Date : 2022-02-10 DOI: 10.1146/annurev-physiol-061121-040127
David A Hartmann, Vanessa Coelho-Santos, Andy Y Shih
{"title":"Pericyte Control of Blood Flow Across Microvascular Zones in the Central Nervous System.","authors":"David A Hartmann,&nbsp;Vanessa Coelho-Santos,&nbsp;Andy Y Shih","doi":"10.1146/annurev-physiol-061121-040127","DOIUrl":"https://doi.org/10.1146/annurev-physiol-061121-040127","url":null,"abstract":"<p><p>The vast majority of the brain's vascular length is composed of capillaries, where our understanding of blood flow control remains incomplete. This review synthesizes current knowledge on the control of blood flow across microvascular zones by addressing issues with nomenclature and drawing on new developments from in vivo optical imaging and single-cell transcriptomics. Recent studies have highlighted important distinctions in mural cell morphology, gene expression, and contractile dynamics, which can explain observed differences in response to vasoactive mediators between arteriole, transitional, and capillary zones. Smooth muscle cells of arterioles and ensheathing pericytes of the arteriole-capillary transitional zone control large-scale, rapid changes in blood flow. In contrast, capillary pericytes downstream of the transitional zone act on slower and smaller scales and are involved in establishing resting capillary tone and flow heterogeneity. Many unresolved issues remain, including the vasoactive mediators that activate the different pericyte types in vivo, the role of pericyte-endothelial communication in conducting signals from capillaries to arterioles, and how neurological disease affects these mechanisms.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"84 ","pages":"331-354"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480047/pdf/nihms-1928192.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10164449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 64
Mitochondria and Inflammatory Bowel Diseases: Toward a Stratified Therapeutic Intervention. 线粒体和炎症性肠病:迈向分层治疗干预。
IF 15.7 1区 医学
Annual review of physiology Pub Date : 2022-02-10 Epub Date: 2021-10-06 DOI: 10.1146/annurev-physiol-060821-083306
Gwo-Tzer Ho, Arianne L Theiss
{"title":"Mitochondria and Inflammatory Bowel Diseases: Toward a Stratified Therapeutic Intervention.","authors":"Gwo-Tzer Ho, Arianne L Theiss","doi":"10.1146/annurev-physiol-060821-083306","DOIUrl":"10.1146/annurev-physiol-060821-083306","url":null,"abstract":"<p><p>Mitochondria serve numerous critical cellular functions, rapidly responding to extracellular stimuli and cellular demands while dynamically communicating with other organelles. Mitochondrial function in the gastrointestinal epithelium plays a critical role in maintaining intestinal health. Emerging studies implicate the involvement of mitochondrial dysfunction in inflammatory bowel disease (IBD). This review presents mitochondrial metabolism, function, and quality control that converge in intestinal epithelial stemness, differentiation programs, barrier integrity, and innate immunity to influence intestinal inflammation. Intestinal and disease characteristics that set the stage for mitochondrial dysfunction being a key factor in IBD and, in turn, pathogenic mitochondrial mechanisms influencing and potentiating the development of IBD, are discussed. These findings establish the basis for potential mitochondrial-targeted interventions for IBD therapy.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"435-459"},"PeriodicalIF":15.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992742/pdf/nihms-1790900.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39489704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases. 矿化皮质激素受体在心血管和心肾疾病中的作用。
IF 18.2 1区 医学
Annual review of physiology Pub Date : 2022-02-10 DOI: 10.1146/annurev-physiol-060821-013950
Jonatan Barrera-Chimal, Benjamin Bonnard, Frederic Jaisser
{"title":"Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases.","authors":"Jonatan Barrera-Chimal,&nbsp;Benjamin Bonnard,&nbsp;Frederic Jaisser","doi":"10.1146/annurev-physiol-060821-013950","DOIUrl":"https://doi.org/10.1146/annurev-physiol-060821-013950","url":null,"abstract":"<p><p>Mineralocorticoid receptor (MR) activation in the heart and vessels leads to pathological effects, such as excessive extracellular matrix accumulation, oxidative stress, and sustained inflammation. In these organs, the MR is expressed in cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and inflammatory cells. We review the accumulating experimental and clinical evidence that pharmacological MR antagonism has a positive impact on a battery of cardiac and vascular pathological states, including heart failure, myocardial infarction, arrhythmic diseases, atherosclerosis, vascular stiffness, and cardiac and vascular injury linked to metabolic comorbidities and chronic kidney disease. Moreover, we present perspectives on optimization of the use of MR antagonists in patients more likely to respond to such therapy and review the evidence suggesting that novel nonsteroidal MR antagonists offer an improved safety profile while retaining their cardiovascular protective effects. Finally, we highlight future therapeutic applications of MR antagonists in cardiovascular injury.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"585-610"},"PeriodicalIF":18.2,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39611413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信