Mohanned Abdalla, Andrea Carminati, Gaochao Cai, Mutez Ali Ahmed
{"title":"Mucilage facilitates root water uptake under edaphic stress: first evidence at the plant scale.","authors":"Mohanned Abdalla, Andrea Carminati, Gaochao Cai, Mutez Ali Ahmed","doi":"10.1093/aob/mcae193","DOIUrl":"https://doi.org/10.1093/aob/mcae193","url":null,"abstract":"<p><strong>Background and aims: </strong>Mucilage has been hypothesized to soften the gradients in matric potential at the root-soil interface, hereby facilitating root water uptake in dry soils and maintaining transpiration with a moderate decline in leaf water potential. So far, this hypothesis has been tested only through simplified experiments and numerical simulations. However, the impact of mucilage on the relationship between transpiration rate (E) and leaf water potential (ψleaf) at the plant scale remains speculative.</p><p><strong>Methods: </strong>We utilized an automated root pressure chamber to measure the E(ψleaf) relationship in two cowpea genotypes with contrasting mucilage production. We then leveraged a soil-plant hydraulic model to reproduce the experimental observations and inferred the matric potential at the root-soil interface for both genotypes.</p><p><strong>Key results: </strong>In wet soil, the relationship between the leaf water potential and transpiration rate (E) was linear for both genotypes. However, as the soil progressively dried, the E(ψleaf) relationship exhibited nonlinearity. Genotype with low mucilage production exhibited nonlinearity earlier during soil drying, i.e. in wetter soil conditions, (soil water content < 0.36 cm3 cm-3) compared to Genotype with high mucilage production (soil water content < 0.30 cm3 cm-3). The incidence of nonlinearity was concomitant with the decline in matric potential across the rhizosphere. High mucilage production attenuated water potential diminution at the root-soil interface with increased E. This shows, for the first time at the plant scale, that root mucilage softened the gradients in matric potential and maintained transpiration in drying soils. The model simulations indicate that a plausible explanation for this effect is an enhanced hydraulic conductivity of the rhizosphere in genotype with higher mucilage production.</p><p><strong>Conclusions: </strong>Mucilage exudation maintains the hydraulic continuity between soil and roots and decelerates the drop in matric potential near the root surface, hereby postponing the hydraulic limitations to transpiration during soil drying.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Beatriz M Meriño, Heidy M Villalobos-Barrantes, Pablo C Guerrero
{"title":"Pleistocene climate oscillations have shaped the expansion and contraction speciation model of the globose Eriosyce sect. Neoporteria cacti in Central Chile.","authors":"Beatriz M Meriño, Heidy M Villalobos-Barrantes, Pablo C Guerrero","doi":"10.1093/aob/mcae087","DOIUrl":"10.1093/aob/mcae087","url":null,"abstract":"<p><strong>Background and aims: </strong>Pleistocene climatic oscillations, characterized by arid (interglacial) and pluvial (glacial) phases, have profoundly impacted the floras of Mediterranean climates. Our study investigates the hypothesis that these climatic extremes have promoted phases of range expansion and contraction in the Eriosyce sect. Neoporteria, resulting in pronounced genetic structuring and restricted gene flow.</p><p><strong>Methods: </strong>Using nuclear microsatellite markers, we genotyped 251 individuals across 18 populations, encompassing all 14 species and one subspecies within the Eriosyce sect. Neoporteria. Additionally, species distribution models were used to reconstruct past (Last Interglacial, Last Glacial Maximum and Mid-Holocene) and current potential distribution patterns, aiming to delineate the climatic influences on species range dynamics.</p><p><strong>Key results: </strong>The gene flow analysis disclosed disparate levels of genetic interchange among species, with marked restrictions observed between entities that are geographically or ecologically separated. Notably, Eriosyce subgibbosa from Hualpen emerged as genetically distinct, warranting its exclusion for clearer genetic clustering into north, central and south clusters. The species distribution models corroborated these findings, showing marked range expansions during warmer periods and contractions during colder times, indicating significant shifts in distribution patterns in response to climatic changes.</p><p><strong>Conclusions: </strong>Our findings emphasize the critical role of Pleistocene climatic fluctuations in driving the dynamic patterns of range expansions and contractions that have led to geographical isolation and speciation within the Eriosyce sect. Neoporteria. Even in the face of ongoing gene flow, these climate-driven processes have played a pivotal role in sculpting the genetic architecture and diversity of species. This study elucidates the complex interplay between climatic variability and evolutionary dynamics among mediterranean cacti in central Chile, highlighting the necessity of considering historical climatic millennial oscillations in conservation and evolutionary biology studies.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"651-664"},"PeriodicalIF":3.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Three-dimensional image analysis specifies the root distribution for drought avoidance in the early growth stage of rice.","authors":"","doi":"10.1093/aob/mcae159","DOIUrl":"10.1093/aob/mcae159","url":null,"abstract":"","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"699"},"PeriodicalIF":3.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takefumi Nakazawa, Tetsuya K Matsumoto, Koki R Katsuhara
{"title":"When is lethal deceptive pollination maintained? A population dynamics approach.","authors":"Takefumi Nakazawa, Tetsuya K Matsumoto, Koki R Katsuhara","doi":"10.1093/aob/mcae108","DOIUrl":"10.1093/aob/mcae108","url":null,"abstract":"<p><strong>Background and aims: </strong>Not all plant-pollinator interactions are mutualistic, and in fact deceptive pollination systems are widespread in nature. The genus Arisaema has a pollination system known as lethal deceptive pollination, in which plants not only attract pollinating insects without providing any rewards, but also trap them until they die. Many Arisaema species are endangered from various disturbances, including reduction in forest habitat, modification of the forest understorey owing to increasing deer abundance, and plant theft for horticultural cultivation. We aimed to theoretically investigate how lethal deceptive pollination can be maintained from a demographic perspective and how plant and pollinator populations respond to different types of disturbance.</p><p><strong>Methods: </strong>We developed and analysed a mathematical model to describe the population dynamics of a deceptive plant species and its victim pollinator. Calibrating the model based on empirical data, we assessed the conditions under which plants and pollinators could coexist, while manipulating relevant key parameters.</p><p><strong>Key results: </strong>The model exhibited qualitatively distinct behaviours depending on certain parameters. The plant becomes extinct when it has a low capability for vegetative reproduction and slow transition from male to female, and plant-insect co-extinction occurs especially when the plant is highly attractive to male insects. Increasing deer abundance has both positive and negative effects because of removal of other competitive plants and diminishing pollinators, respectively. Theft for horticultural cultivation can readily threaten plants whether male or female plants are frequently collected. The impact of forest habitat reduction may be limited compared with that of other disturbance types.</p><p><strong>Conclusions: </strong>Our results have emphasized that the demographic vulnerability of lethal deceptive pollination systems would differ qualitatively from that of general mutualistic pollination systems. It is therefore important to consider the demographics of both victim pollinators and deceptive plants to estimate how endangered Arisaema populations respond to various disturbances.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"665-682"},"PeriodicalIF":3.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strategies of flowering plants to avoid pollen collection by undesirable flower visitors. A commentary on 'High toxin concentration in pollen may deter collection by bees in butterfly-pollinated Rhododendron molle'.","authors":"Fabian A Ruedenauer","doi":"10.1093/aob/mcae088","DOIUrl":"10.1093/aob/mcae088","url":null,"abstract":"","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"i-ii"},"PeriodicalIF":3.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seasonal variation of vessel pits in sapwood: microscopical analyses of the morphology and chemical components of pit membrane encrustations in Fraxinus mandschurica.","authors":"Shohei Yamagishi, Miho Kojima, Katsushi Kuroda, Hisashi Abe, Yuzou Sano","doi":"10.1093/aob/mcae113","DOIUrl":"10.1093/aob/mcae113","url":null,"abstract":"<p><strong>Background and aims: </strong>Pit pairs and their filter-like partition, i.e. pit membranes, play important roles as water pathways, barriers and regulators in the water-conducting system of angiosperms. In Fraxinus species, the intervessel and vessel-parenchyma pit membranes in sapwood are normally encrusted during winter. Although these encrustations inevitably influence the performance of pits, their properties and functions remain unclear. This study aimed to reveal the morphological and chemical characteristics of encrustations in F. mandshurica in order to deepen understanding of the seasonal encrustation of pit membranes.</p><p><strong>Methods: </strong>Seasonal and positional variations in the presence and morphology of encrustations were examined by field-emission scanning electron microscopy (FE-SEM). Cryo-FE-SEM for freeze-fixed greenwood samples was conducted to clarify whether encrustations were present in living trees. Chemical components were examined by histochemical staining using light and electron microscopy, immunofluorescence labelling and ultraviolet microspectroscopy.</p><p><strong>Key results: </strong>Encrustations began to deposit in autumn before leaf senescence and disappeared in spring before bud flushing. They infiltrated within the pit membranes, which suggested that they severely limit the permeation of pits. The encrustations differed in morphology among positions: they entirely filled the pit chambers in latewood, while they covered the pit membranes in earlywood. The encrustations were similarly observed in the samples that were freeze-fixed immediately after collection, indicating that they are present in living trees. The encrustations contained polysaccharides, including xyloglucan and homogalacturonan, and phenolic compounds, possibly including flavonoids and coumarins. These chemical components were also detected in droplets found in the latewood vessels with the encrustations, suggesting that the materials constituting encrustations were supplied through the vessel lumens.</p><p><strong>Conclusions: </strong>Encrustations undoubtedly cover the pit membranes in living F. mandshurica trees in winter and their morphology and chemical composition indicate that they are impermeable, have positional differences in function and are characterized by elaborate deposition/removal processes.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"561-576"},"PeriodicalIF":3.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paolo Bartolić, Emma J Morgan, Nélida Padilla-García, Filip Kolář
{"title":"Ploidy as a leaky reproductive barrier: mechanisms, rates and evolutionary significance of interploidy gene flow.","authors":"Paolo Bartolić, Emma J Morgan, Nélida Padilla-García, Filip Kolář","doi":"10.1093/aob/mcae096","DOIUrl":"10.1093/aob/mcae096","url":null,"abstract":"<p><strong>Background: </strong>Whole-genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species.</p><p><strong>Scope: </strong>Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented.</p><p><strong>Conclusions: </strong>The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"537-550"},"PeriodicalIF":3.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia Dupin, Cynthia Hong-Wa, Myriam Gaudeul, Guillaume Besnard
{"title":"Phylogenetics and biogeography of the olive family (Oleaceae).","authors":"Julia Dupin, Cynthia Hong-Wa, Myriam Gaudeul, Guillaume Besnard","doi":"10.1093/aob/mcae100","DOIUrl":"10.1093/aob/mcae100","url":null,"abstract":"<p><strong>Background and aims: </strong>Progress in the systematic studies of the olive family (Oleaceae) during the last two decades provides the opportunity to update its backbone phylogeny and to investigate its historical biogeography. We also aimed to understand the factors underlying the disjunct distribution pattern between East Asia and both West Asia and Europe that is found more commonly in this family than in any other woody plant family.</p><p><strong>Methods: </strong>Using a sampling of 298 species out of ~750, the largest in a phylogenetic study of Oleaceae thus far, with a set of 36 plastid and nuclear markers, we reconstructed and dated a new phylogenetic tree based on maximum likelihood and Bayesian methods and checked for any reticulation events. We also assessed the relative support of four competing hypotheses [Qinghai-Tibet Plateau uplift (QTP-only hypothesis); climatic fluctuations (climate-only hypothesis); combined effects of QTP uplift and climate (QTP-climate hypothesis); and no effects (null hypothesis)] in explaining these disjunct distributions.</p><p><strong>Key results: </strong>We recovered all tribes and subtribes within Oleaceae as monophyletic, but uncertainty in the position of tribe Forsythieae remains. Based on this dataset, no reticulation event was detected. Our biogeographical analyses support the QTP-climate hypothesis as the likely main explanation for the East-West Eurasian disjunctions in Oleaceae. Our results also show an earlier origin of Oleaceae at ~86 Mya and the role of Tropical Asia as a main source of species dispersals.</p><p><strong>Conclusion: </strong>Our new family-wide and extensive phylogenetic tree highlights both the stable relationships within Oleaceae, including the polyphyly of the genus Chionanthus, and the need for further systematic studies within the largest and most undersampled genera of the family (Chionanthus and Jasminum). Increased sampling will also help to fine-tune biogeographical analyses across spatial scales and geological times.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"577-592"},"PeriodicalIF":3.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aiden Hendrickx, Yves Hatangi, Olivier Honnay, Steven B Janssens, Piet Stoffelen, Filip Vandelook, Jonas Depecker
{"title":"Leaf functional trait evolution and its putative climatic drivers in African Coffea species.","authors":"Aiden Hendrickx, Yves Hatangi, Olivier Honnay, Steven B Janssens, Piet Stoffelen, Filip Vandelook, Jonas Depecker","doi":"10.1093/aob/mcae111","DOIUrl":"10.1093/aob/mcae111","url":null,"abstract":"<p><strong>Background and aims: </strong>Leaf traits are known to be strong predictors of plant performance and can be expected to (co)vary along environmental gradients. We investigated the variation, integration, environmental relationships and evolutionary history of leaf functional traits in the genus Coffea, typically a rainforest understorey shrub, across Africa. A better understanding of the adaptive processes involved in leaf trait evolution can inform the use and conservation of coffee genetic resources in a changing climate.</p><p><strong>Methods: </strong>We used phylogenetic comparative methods to investigate the evolution of six leaf traits measured from herbarium specimens of 58 African Coffea species. We added environmental data and data on maximum plant height for each species to test trait-environment correlations in various (sub)clades, and we compared continuous trait evolution models to identify variables driving trait diversification.</p><p><strong>Key results: </strong>Substantial leaf trait variation was detected across the genus Coffea in Africa, which was mostly interspecific. Of these traits, stomatal size and stomatal density exhibited a clear trade-off. We observed low densities of large stomata in early-branching lineages and higher densities of smaller stomata in more recent taxa, which we hypothesize to be related to declining CO2 levels since the mid-Miocene. Brownian motion evolution was rejected in favor of white noise or Ornstein-Uhlenbeck models for all traits, implying these traits are adaptively significant rather than driven by pure drift. The evolution of leaf area was likely driven by precipitation, with smaller leaves in drier climates across the genus.</p><p><strong>Conclusions: </strong>Generally, Coffea leaf traits appear to be evolutionarily labile and governed by stabilizing selection, though evolutionary patterns and correlations differ depending on the traits and clades considered. Our study highlights the importance of a phylogenetic perspective when studying trait relationships across related taxa, as well as the consideration of various taxonomic ranges.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"683-698"},"PeriodicalIF":3.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523614/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Eugenia Segretin, Gabriela Cynthia Soto, Christian Damian Lorenzo
{"title":"Latin America: A hub for agrobiotechnological innovations.","authors":"Maria Eugenia Segretin, Gabriela Cynthia Soto, Christian Damian Lorenzo","doi":"10.1093/aob/mcae191","DOIUrl":"10.1093/aob/mcae191","url":null,"abstract":"<p><strong>Background: </strong>Modern biotechnology is one of the last century's major advances in human science. Particularly in the agronomical field, the landscape of crop improvement technologies has witnessed a great expansion, driven by the integration of molecular and genetic engineering methodologies into the breeding toolbox. Latin America (LATAM) serves as a pioneering region in incorporating such techniques with several countries swiftly embracing these technologies.</p><p><strong>Scope: </strong>This review aims to give a comprehensive overview of the elements that influenced agrobiotech acceptance in LATAM countries and how such cases could provide support for upcoming technologies to be considered worldwide.</p><p><strong>Conclusions: </strong>Nearly 50 years of biotech breakthroughs have provided humankind with an impressive portfolio of tools already integrated into several life-sciences areas. The agronomical field has greatly progressed thanks to technologies derived from Genetically Modified Organisms (GMOs) and high promises are being made to also incorporate genome -editing products. LATAM's case is a prime example of how early introduction of novelties in the crop production chain can result in improved yields, paving the way for future developments to be easily integrated into the technological ecosystem of a region. The example set by LATAM can also be useful for the present gene-editing regulatory scenario. With several countries presently on the path to approving these methods in their current crop systems, basing their next steps on the southern continent's example, could represent a safe and practical pathway towards a new agronomical revolution.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}