Amino AcidsPub Date : 2024-12-04DOI: 10.1007/s00726-024-03427-0
Fei Yang, Yunqi Ma
{"title":"The application and prospects of antimicrobial peptides in antiviral therapy","authors":"Fei Yang, Yunqi Ma","doi":"10.1007/s00726-024-03427-0","DOIUrl":"10.1007/s00726-024-03427-0","url":null,"abstract":"<div><p>Antimicrobial peptides (AMPs) have broad-spectrum antimicrobial activity, enabling them to rapidly detect and eliminate targets. In addition, many AMPs are natural peptides, making them promising candidates for therapeutic drugs. This review discusses the basic properties and mechanisms of action of AMPs, highlighting their ability to disrupt microbial membranes and modulate host immune responses. It also reviews the current state of research into using AMPs against various viral infections, focusing on their therapeutic potential against viruses that contribute to the global health crisis. Despite promising developments, therapies based on AMPs still face challenges such as stability, toxicity, and production costs. In this text, we will discuss these challenges and the latest technological advances aimed at overcoming them. The combination of nanotechnology and bioengineering approaches offers new ways to enhance the delivery, efficacy, and safety of AMPs. We emphasize the importance of further research to fully exploit the potential of AMPs in antiviral therapy, advocating a multifaceted approach that includes optimizing clinical use and exploring synergies with existing antiviral drugs.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03427-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amino AcidsPub Date : 2024-12-03DOI: 10.1007/s00726-024-03430-5
Artavazd S. Poghosyan, Emma A. Khachatryan, Anna F. Mkrtchyan, Volodya Mirzoyan, Anahit M. Hovhannisyan, Karapet R. Ghazaryan, Ela V. Minasyan, Peter Langer, Ashot S. Saghyan
{"title":"Synthesis of enantiomerically enriched β-substituted analogs of (S)-α-alanine containing 1-phenyl-1H-1,2,3-triazole groups","authors":"Artavazd S. Poghosyan, Emma A. Khachatryan, Anna F. Mkrtchyan, Volodya Mirzoyan, Anahit M. Hovhannisyan, Karapet R. Ghazaryan, Ela V. Minasyan, Peter Langer, Ashot S. Saghyan","doi":"10.1007/s00726-024-03430-5","DOIUrl":"10.1007/s00726-024-03430-5","url":null,"abstract":"<div><p>A synthesis of new enantiomerically enriched derivatives of (S)-α-aminopropionic acid, containing in the β-position 1,2,3-triazole groups coupled with a o-, m- and p-substituted phenyl residue, was developed based on Cu(I) catalyzed [3 + 2] cycloaddition of azides with alkynes. As the starting materials was used the square-planar Ni(II)complex of the Schiff base of propargylglycine with the chiral auxiliary BPB (Benzylprolylbenzophenone) and 1,4-substituted phenyl azides. The assignment of the (S)-absolute configuration of the α-carbon atom of the amino acid residue of the main diastereomeric complexes of the cycloaddition products was carried out on the basis of positive Cotton effects in the region of 480–580 nm of the circular dichroism spectra. The target amino acids were isolated from acid hydrolysates of diastereomeric complexes using ion-exchange demineralization and crystallization from aqueous ethanol. Additional confirmation of the absolute configuration and determination of the enantiomeric purity of the target amino acids were carried out by chiral HPLC analysis. As a result, seven new non-proteinogenic (S)-α-amino acids, containing in the β-position a 1,2,3-triazole moiety, were synthesized.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03430-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple strategies of HSP antimicrobial peptide optimization to enhance antimicrobial activity","authors":"Xiaozhong Cheng, Yonghuang Zhang, Yan Zhang, Yajun Chen, Jianli Chen, Wei Wang, Guilan Zhu","doi":"10.1007/s00726-024-03428-z","DOIUrl":"10.1007/s00726-024-03428-z","url":null,"abstract":"<div><p>Antimicrobial peptides (AMPs) have caught the attention of researchers over the last couple of years due to their unique membrane lytic mechanism for combating antibiotic resistance, which differs from the molecular targets of traditional antibiotics. Although natural AMPs exhibit potential antimicrobial activity against a wide range of microorganisms, some drawbacks, such as toxicity, low antibacterial activity, and high production costs limit their clinical application. To enhance the antimicrobial activity of a series of HSP peptides derived from the natural peptide HSP-1, this study optimized them using a variety of strategies, including net charge, hydrophobic moment, hydrophobicity, and helicity. Optimizing the antimicrobial action of HSP peptides depended mostly on net charge, hydrophobic moment, and hydrophobicity rather than helicity. HSP-M4 may be designed to combat microbial infections because the antimicrobial activity and cytotoxicity assays showed that they exhibited low cytotoxicity and prominent antimicrobial activity, respectively.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03428-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amino AcidsPub Date : 2024-11-23DOI: 10.1007/s00726-024-03429-y
Yuwen Zhang, Jiting Qiu, Shouyue Sun, Xuqian Fang
{"title":"Altered amino acid levels in young hypopituitarism: impact of NAFLD and insulin resistance","authors":"Yuwen Zhang, Jiting Qiu, Shouyue Sun, Xuqian Fang","doi":"10.1007/s00726-024-03429-y","DOIUrl":"10.1007/s00726-024-03429-y","url":null,"abstract":"<div><p>Elevated concentrations of amino acids (AAs) are commonly observed in patients with nonalcoholic fatty liver disease (NAFLD). Individuals with hypopituitarism (HP) are at a heightened risk of developing NAFLD due to factors such as visceral obesity, increased insulin resistance (IR), and disturbances in lipid metabolism. However, the changes in AAs concentrations associated with HP remain poorly understood. Therefore, our study aimed to investigate whether individuals with HP, who were not receiving growth hormone replacement therapy (GHRT), exhibited altered AAs compared to controls (CTs), and whether these AAs were associated with IR, the presence of NAFLD, and the Metabolic Syndrome (MetS) score. The AAs profiles of 133 young males with HP (age: 24.5 ± 5.9; 57 with NAFLD and 76 without NAFLD) and 90 age and BMI-matched CTs were analyzed using untargeted metabolomics. The results revealed that most AAs were found to be elevated in subjects with HPs compared to CTs. Glutamate, glutamine, norleucine, and branched-chain amino acids (BCAAs) (leucine and valine) were correlated with the homeostasis model assessment of insulin resistance (HOMA-IR), with glutamate and norleucine showing independent linkage. Glutamate and proline levels were specifically associated with MetS score, while alanine and proline linked to NAFLD. Given that elevated glutamate and BCAAs levels have higher prevalence of NAFLD, we hypothesized that the changes in AAs observed in HPs may be attributed to the impact of NAFLD and IR.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03429-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amino AcidsPub Date : 2024-10-19DOI: 10.1007/s00726-024-03423-4
Alain P. Gobert, Yvonne L. Latour, Kara M. McNamara, Caroline V. Hawkins, Kamery J. Williams, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Alberto G. Delgado, Ginger L. Milne, Shilin Zhao, M. Blanca Piazuelo, M. Kay Washington, Lori A. Coburn, Keith T. Wilson
{"title":"The reverse transsulfuration pathway affects the colonic microbiota and contributes to colitis in mice","authors":"Alain P. Gobert, Yvonne L. Latour, Kara M. McNamara, Caroline V. Hawkins, Kamery J. Williams, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Alberto G. Delgado, Ginger L. Milne, Shilin Zhao, M. Blanca Piazuelo, M. Kay Washington, Lori A. Coburn, Keith T. Wilson","doi":"10.1007/s00726-024-03423-4","DOIUrl":"10.1007/s00726-024-03423-4","url":null,"abstract":"<div><p>Cystathionine γ-lyase (CTH) is a critical enzyme in the reverse transsulfuration pathway, the major route for the metabolism of sulfur-containing amino acids, notably converting cystathionine to cysteine. We reported that CTH supports gastritis induced by the pathogen <i>Helicobacter pylori</i>. Herein our aim was to investigate the role of CTH in colonic inflammation. First, we found that CTH is induced in the colon mucosa in mice with dextran sulfate sodium-induced colitis. Expression of CTH was completely absent in the colon of <i>Cth</i><sup>–/–</sup> mice. We observed that clinical and histological parameters are ameliorated in <i>Cth</i>-deficient mice compared to wild-type animals. However, <i>Cth</i> deletion had no effect on tumorigenesis and the level of dysplasia in mice treated with azoxymethane-DSS, as a reliable model of colitis-associated carcinogenesis. Mechanistically, we determined that the deletion of the gene <i>Slc7a11</i> encoding for solute carrier family 7 member 11, the transporter of the anionic form of cysteine, does not affect DSS colitis. Lastly, we found that the richness and diversity of the fecal microbiota were significantly increased in <i>Cth</i><sup>–/–</sup> mice compared to both WT and <i>Slc7a11</i><sup>–/–</sup> mice. In conclusion, our data suggest that the enzyme CTH represents a target for clinical intervention in patients with inflammatory bowel disease, potentially by beneficially reshaping the composition of the gut microbiota.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03423-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amino AcidsPub Date : 2024-10-19DOI: 10.1007/s00726-024-03424-3
Sebastian Jakobsen, Maria Pedersen, Carsten Uhd Nielsen
{"title":"Structure-activity relationship of amino acid analogs to probe the binding pocket of sodium-coupled neutral amino acid transporter SNAT2","authors":"Sebastian Jakobsen, Maria Pedersen, Carsten Uhd Nielsen","doi":"10.1007/s00726-024-03424-3","DOIUrl":"10.1007/s00726-024-03424-3","url":null,"abstract":"<div><p>The sodium-coupled neutral amino acid transporter SNAT2 (SLC38A2) has been shown to have important physiological functions and is implicated in various diseases like cancer. However, few compounds targeting this transporter have been identified and little is known about the structural requirements for SNAT2 binding. In this study, the aim was to establish the basic structure-activity relationship for SNAT2 using amino acid analogs. These analogs were first studied for their ability to inhibit SNAT2-mediated <sup>3</sup>H-glycine uptake in hyperosmotically treated PC-3 cells. Then to identify substrates a FLIPR membrane potential assay and o-phthalaldehyde derivatization of intracellular amino with subsequent quantification using HPLC-Fl was used. The results showed that ester derivatives of the C-terminus maintained SNAT2 affinity, suggesting that the negative charge was less important. On the other hand, the positive charge at the N-terminus of the substrate and the ability to donate at least two hydrogen bonds to the binding site appeared important for SNAT2 recognition of the amine. Side chain charged amino acids generally had no affinity for SNAT2, but their non-charged derivatives were able to inhibit SNAT2-mediated <sup>3</sup>H-glycine uptake, while also showing that amino acids of a notable length still had affinity for SNAT2. Several amino acid analogs appeared to be novel substrates of SNAT2, while γ-benzyl L-glutamate seemed to be inefficiently translocated by SNAT2. Elaborating on this structure could lead to the discovery of non-translocated inhibitors of SNAT2. Thus, the present study provides valuable insights into the basic structural binding requirements for SNAT2 and can aid the future discovery of compounds that target SNAT2.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03424-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amino AcidsPub Date : 2024-10-15DOI: 10.1007/s00726-024-03422-5
Sen Yang, Piao Xu
{"title":"LLM4THP: a computing tool to identify tumor homing peptides by molecular and sequence representation of large language model based on two-layer ensemble model strategy","authors":"Sen Yang, Piao Xu","doi":"10.1007/s00726-024-03422-5","DOIUrl":"10.1007/s00726-024-03422-5","url":null,"abstract":"<div><p>Tumor homing peptides (THPs) have a distinctive capacity to specifically attach to tumor cells, providing a promising approach for targeted cancer treatment and detection. Although THPs have the potential for significant impact, their detection by conventional methods is both time-consuming and expensive. To tackle this issue, we provide LLM4THP, an innovative computational approach that utilizes large language models (LLMs) to quickly and effectively detect THPs. LLM4THP utilizes two protein LLMs, ESM2 and Prot_T5_XL_UniRef50, to encode peptide sequences. This allows for the capture of complex patterns and relationships within the peptide data. In addition, we utilize inherent sequence characteristics such as Amino Acid Composition (AAC), Pseudo Amino Acid Composition (PAAC), Amphiphilic Pseudo Amino Acid Composition (APAAC), and Composition, Transition, and Distribution (CTD) to improve the representation of peptides. The RDKitDescriptors feature representation approach transforms peptide sequences into molecular objects and computes chemical characteristics, resulting in enhanced THP identification. The LLM4THP ensemble strategy incorporates various features into a two-layer learning architecture. The first layer consists of LightGBM, XGBoost, Random Forest, and Extremely Randomized Trees, which generate a set of meta results. The second layer utilizes Logistic Regression to further refine the identification of sequences as either THP or non-THP. LLM4THP exhibits exceptional performance compared to the most advanced methods, showcasing enhancements in accuracy, Matthew’s correlation coefficient, F1 score, area under the curve, and average precision. The source code and dataset can be accessed at the following URL: https://github.com/abcair/LLM4THP.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03422-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetic analysis of D-Alanine upon oral intake in humans","authors":"Tomonori Kimura, Shinsuke Sakai, Masaru Horio, Shiro Takahara, Shoto Ishigo, Maiko Nakane, Eiichi Negishi, Hiroshi Imoto, Masashi Mita, Kenji Hamase, Yoko Higa-Maekawa, Yoichi Kakuta, Masayuki Mizui, Yoshitaka Isaka","doi":"10.1007/s00726-024-03421-6","DOIUrl":"10.1007/s00726-024-03421-6","url":null,"abstract":"<div><p>D-Alanine, a rare enantiomer of alanine, can potentially alleviate the worsening of viral infections and maintain circadian rhythm. This study aimed to analyze the kinetics of D-Alanine upon oral intake. Five healthy volunteers were administered D-Alanine as a single oral dose at 11,236 or 33,708 µmoL (1–3 g). Upon intake of the lower dose, the plasma level of D-Alanine reached its peak concentration of 588.4 ± 40.9 µM with a peak time of 0.60 ± 0.06 h. The compartment model estimated the clearance of D-Alanine at 12.5 ± 0.3 L/h, or 208 ± 5 mL/min, distribution volume of 8.3 ± 0.7 L and half-life of 0.46 ± 0.04 h, suggesting a rapid clearance of D-Alanine. The peak concentration and area under the curve increased proportionally upon intake of the higher dose, while the clearance, distribution volume and half-life did not. The urinary ratio of D-Alanine per sum of D- and L-Alanine reached its peak of nearly 100%, followed by a slow decline. The peak time of the urinary ratio was 1.15 ± 0.15 h, showing a time lag of blood to urine excretion. Fractional excretion, a ratio of the clearance of a substance per a standard molecule in kidney, of D-Alanine increased from 14.0 ± 5.8% to 64.5 ± 10.3%; the latter corresponded to the urinary clearance of D-Alanine as about 77 mL/min for an adult, with a peak time of 1.90 ± 0.56 h. D-Alanine was quickly absorbed and appeared in blood, followed by urinary excretion. This kinetic analysis increases our fundamental knowledge of the oral intake of D-Alanine for the chronic dosing.</p><p>\u0000 Trial number: #UMIN000050865.</p><p>\u0000 Date of registration: 2023/6/30.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03421-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amino AcidsPub Date : 2024-10-13DOI: 10.1007/s00726-024-03420-7
Fatemeh Abbasi, Mohammad Mehdi Haghighat Lari, Gholamreza Reza Khosravi, Elahe Mansouri, Nastaran Payandeh, Alireza Milajerdi
{"title":"A systematic review and meta-analysis of clinical trials on the effects of glutamine supplementation on gut permeability in adults","authors":"Fatemeh Abbasi, Mohammad Mehdi Haghighat Lari, Gholamreza Reza Khosravi, Elahe Mansouri, Nastaran Payandeh, Alireza Milajerdi","doi":"10.1007/s00726-024-03420-7","DOIUrl":"10.1007/s00726-024-03420-7","url":null,"abstract":"<div><p>The gastrointestinal tract's epithelial barrier plays a crucial role in maintaining health. This study aims to investigate the impact of glutamine supplementation on intestinal permeability, considering its importance for immune function and nutrient absorption. The study adhered to the PRISMA protocol for systematic reviews and meta-analyses. A systematic search was performed in four databases (PubMed, Scopus, Web of Science, and Google Scholar) until April 2023 to identify clinical trials on glutamine supplementation and gastrointestinal permeability. Eligibility criteria included randomized placebo-controlled trials measuring gut permeability post-glutamine supplementation. Studies were included regardless of language or publication date. Data extraction involved study characteristics, intervention details, and outcomes. Quality assessment was performed using the Cochrane tool, and statistical analysis utilized mean differences and standard deviations with a random effects model. Subgroup analysis was conducted to explore heterogeneity. The systematic review and meta-analysis included 10 studies from 1998 to 2014 with 352 participants. A total of 216 patients were enrolled in the intervention group, and 212 in the control group. The mean participant age was 46.52 years. The participants had different types of diseases in terms of their health status. Overall, glutamine supplementation did not significantly affect intestinal permeability (WMD: −0.00, 95% CI −0.04, 0.03). Subgroup analysis showed a significant reduction in intestinal permeability with doses over 30g/day (WMD: −0.01, 95% CI −0.10, −0.08). The glutamine supplements were administered orally in all included studies. The meta-analysis demonstrated a significant reduction in intestinal permeability with glutamine supplementation exceeding 30 mg/day for durations of less than 2 weeks. Further investigations with varying dosages and patient populations are warranted to enhance understanding and recommendations regarding glutamine supplementation's effects on gut permeability.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03420-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green synthesis of self-oriented flower-like Ag@Ag2O nanostructures functionalized with L-Tryptophan for colorimetric simultaneous determination of ultra-trace level of thiamin and riboflavin","authors":"Maryam Abbasi Tarighat, Zahra Khosravani, Gholamreza Abdi","doi":"10.1007/s00726-024-03406-5","DOIUrl":"10.1007/s00726-024-03406-5","url":null,"abstract":"<div><p>The study focuses on the green synthesis of Ag@Ag<sub>2</sub>O nanostructures using <i>Padina</i> algae extract and functionalizing them with L-tryptophan to enhance their properties as a colorimetric sensor for simultaneous detection of ultra-trace levels of thiamin and riboflavin. The nanostructures are characterized using techniques like XRD, FESEM, FTIR, TEM, AFM, and DLS to understand their morphology, structure, and interactions with target molecules. FESEM analysis revealed the hierarchical flower-like Ag@Ag<sub>2</sub>O nanostructures. The TEM image shows the formation of core-shell nanostructures. Also, DLS analysis and surface zeta potential spectra illustrated the aggregated nature of fabricated nanocomposites in the presence of vitamins. The study is the first to report simultaneous determination of thiamin and riboflavin using a colorimetric sensor based on Ag@Ag<sub>2</sub>O-L-Try nanocomposites using partial leas square (PLS). The dynamic range of thiamin and riboflavin was achieved in 0.1 mol L<sup>−</sup>1 acetate buffer pH 4 and the ratio Ag@Ag<sub>2</sub>O: L-try 1:1. The Ag@Ag<sub>2</sub>O-L-Try sensor exhibited two linear ranges of 0.1- 1.0 and 3-350 µMol L<sup>− 1</sup> for riboflavin and a linear range 3.0–60 µMol L<sup>− 1</sup> for thiamin. Also, low detection limit of 1.92 µMol L<sup>− 1</sup> and 0.048 µMol L<sup>− 1</sup> was obtained for riboflavin and thiamin, respectively. The results indicated that the success of the method depends on the selective and sensitive colorimetric assay of the sensor along with the simultaneous determination by the PLS algorithm. Hence, the proposed technique can be used for the accurate and precise determination of vitamins in different pharmaceutical syrup and tablet samples.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03406-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}