桔梗赖氨酸丙二酸酰化的系统定性蛋白质组分析。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qingshan Yang, Shaowei Xu, Weimin Jiang, Fei Meng, Shuting Wang, Zongping Sun, Na Chen, Daiyin Peng, Juan Liu, Shihai Xing
{"title":"桔梗赖氨酸丙二酸酰化的系统定性蛋白质组分析。","authors":"Qingshan Yang,&nbsp;Shaowei Xu,&nbsp;Weimin Jiang,&nbsp;Fei Meng,&nbsp;Shuting Wang,&nbsp;Zongping Sun,&nbsp;Na Chen,&nbsp;Daiyin Peng,&nbsp;Juan Liu,&nbsp;Shihai Xing","doi":"10.1007/s00726-024-03432-3","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. <i>Platycodon grandiflorus</i>, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in <i>P. grandiflorus</i>. A total of 888 lysine malonylation-modified proteins in <i>P. grandiflorus</i> were identified, with a total of 1755 modification sites. According to the functional annotation, malonylated proteins were closely related to catalysis, binding, and other reactions. Subcellular localization showed that related proteins were enriched in chloroplasts, cytoplasm, and nuclei, indicating that this modification could regulate various metabolic processes. Motif analysis showed the enrichment of Alanine (A), Cysteine (C), Glycine (G), and Valine (V) amino acids surrounding malonylated lysine residues. Metabolic pathway and protein-protein interaction network analyses suggested these modifications are mainly involved in plant photosynthesis. Moreover, malonylated proteins are also involved in stress and defense responses. This study shows that lysine malonylation can affect a variety of biological processes and metabolic pathways, and the contents are reported for the first time in <i>P. grandiflorus</i>, which can provide important information for further research on <i>P. grandiflorus</i> and lysine malonylation’s role in environment stress, photosynthesis, and secondary metabolites enrichment.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"57 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03432-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Systematic qualitative proteome-wide analysis of lysine malonylation profiling in Platycodon grandiflorus\",\"authors\":\"Qingshan Yang,&nbsp;Shaowei Xu,&nbsp;Weimin Jiang,&nbsp;Fei Meng,&nbsp;Shuting Wang,&nbsp;Zongping Sun,&nbsp;Na Chen,&nbsp;Daiyin Peng,&nbsp;Juan Liu,&nbsp;Shihai Xing\",\"doi\":\"10.1007/s00726-024-03432-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. <i>Platycodon grandiflorus</i>, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in <i>P. grandiflorus</i>. A total of 888 lysine malonylation-modified proteins in <i>P. grandiflorus</i> were identified, with a total of 1755 modification sites. According to the functional annotation, malonylated proteins were closely related to catalysis, binding, and other reactions. Subcellular localization showed that related proteins were enriched in chloroplasts, cytoplasm, and nuclei, indicating that this modification could regulate various metabolic processes. Motif analysis showed the enrichment of Alanine (A), Cysteine (C), Glycine (G), and Valine (V) amino acids surrounding malonylated lysine residues. Metabolic pathway and protein-protein interaction network analyses suggested these modifications are mainly involved in plant photosynthesis. Moreover, malonylated proteins are also involved in stress and defense responses. This study shows that lysine malonylation can affect a variety of biological processes and metabolic pathways, and the contents are reported for the first time in <i>P. grandiflorus</i>, which can provide important information for further research on <i>P. grandiflorus</i> and lysine malonylation’s role in environment stress, photosynthesis, and secondary metabolites enrichment.</p></div>\",\"PeriodicalId\":7810,\"journal\":{\"name\":\"Amino Acids\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00726-024-03432-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Amino Acids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00726-024-03432-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amino Acids","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00726-024-03432-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们发现赖氨酸丙二醛化修饰可以影响生物代谢,在植物生命活动中发挥重要作用。桔梗是一种经济作物和药用植物,在相关文献中未见丙二醛酰化的报道。本研究定性地介绍了桔梗中赖氨酸丙二酰化作用。共鉴定出桔梗赖氨酸丙二酰化修饰蛋白888个,修饰位点1755个。根据功能注释,丙二酰化蛋白与催化、结合等反应密切相关。亚细胞定位表明,相关蛋白在叶绿体、细胞质和细胞核中富集,表明这种修饰可以调节多种代谢过程。基序分析显示丙二酰化赖氨酸残基周围富集了丙氨酸(A)、半胱氨酸(C)、甘氨酸(G)和缬氨酸(V)氨基酸。代谢途径和蛋白质相互作用网络分析表明,这些修饰主要参与植物光合作用。此外,丙二酰化蛋白还参与应激和防御反应。本研究表明,赖氨酸丙二酰化可以影响多种生物过程和代谢途径,并首次报道了其含量,为进一步研究赖氨酸丙二酰化在桔花中环境胁迫、光合作用和次生代谢产物富集中的作用提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic qualitative proteome-wide analysis of lysine malonylation profiling in Platycodon grandiflorus

In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. Platycodon grandiflorus, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in P. grandiflorus. A total of 888 lysine malonylation-modified proteins in P. grandiflorus were identified, with a total of 1755 modification sites. According to the functional annotation, malonylated proteins were closely related to catalysis, binding, and other reactions. Subcellular localization showed that related proteins were enriched in chloroplasts, cytoplasm, and nuclei, indicating that this modification could regulate various metabolic processes. Motif analysis showed the enrichment of Alanine (A), Cysteine (C), Glycine (G), and Valine (V) amino acids surrounding malonylated lysine residues. Metabolic pathway and protein-protein interaction network analyses suggested these modifications are mainly involved in plant photosynthesis. Moreover, malonylated proteins are also involved in stress and defense responses. This study shows that lysine malonylation can affect a variety of biological processes and metabolic pathways, and the contents are reported for the first time in P. grandiflorus, which can provide important information for further research on P. grandiflorus and lysine malonylation’s role in environment stress, photosynthesis, and secondary metabolites enrichment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Amino Acids
Amino Acids 生物-生化与分子生物学
CiteScore
6.40
自引率
5.70%
发文量
99
审稿时长
2.2 months
期刊介绍: Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered. Fields of interest include: Biochemistry, food chemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, gastroenterology, microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信