基于pres1包被壳聚糖纳米颗粒与SB3蛋白结合的姜黄素和CM11肽靶向递送肝癌细胞。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Danial Rahmani, Ramezan Ali Taheri, Mehrdad Moosazadeh Moghaddam
{"title":"基于pres1包被壳聚糖纳米颗粒与SB3蛋白结合的姜黄素和CM11肽靶向递送肝癌细胞。","authors":"Danial Rahmani,&nbsp;Ramezan Ali Taheri,&nbsp;Mehrdad Moosazadeh Moghaddam","doi":"10.1007/s00726-024-03438-x","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein. Chitosan was used to prepare NPs. To Cur and CM11 loading, drugs were added to the CS solution in appropriate concentrations. Pres1 was coupled to the surface of the NPs using EDC catalyst to target NPs against HepG2 cells. SEM and DLS analysis confirmed that the PreS1-Cur-CM11-CS NPs had a size of about 132 nm, the ideal size for penetrating the cell membrane. The loading of Cur and CM11 was equal to 87% and 65%, respectively, which had a sustained and better release in the acidic environment than in the physiological environment. The MTT assay showed that PreS1-Cur-CM11-CS NPs act in a targeted and specific manner with the highest toxicity on the HepG2 cells compared to the control by a decrease in viability of about 26% after 48 h based on cell apoptosis. The results showed that PreS1-Cur-CM11-CS NPs are capable of targeted and specific drug release against HepG2 cancer cells and have significant potential to fight this cancer.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"57 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762422/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted delivery of curcumin and CM11 peptide against hepatocellular carcinoma cells based on binding affinity of PreS1-coated chitosan nanoparticles to SB3 protein\",\"authors\":\"Danial Rahmani,&nbsp;Ramezan Ali Taheri,&nbsp;Mehrdad Moosazadeh Moghaddam\",\"doi\":\"10.1007/s00726-024-03438-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein. Chitosan was used to prepare NPs. To Cur and CM11 loading, drugs were added to the CS solution in appropriate concentrations. Pres1 was coupled to the surface of the NPs using EDC catalyst to target NPs against HepG2 cells. SEM and DLS analysis confirmed that the PreS1-Cur-CM11-CS NPs had a size of about 132 nm, the ideal size for penetrating the cell membrane. The loading of Cur and CM11 was equal to 87% and 65%, respectively, which had a sustained and better release in the acidic environment than in the physiological environment. The MTT assay showed that PreS1-Cur-CM11-CS NPs act in a targeted and specific manner with the highest toxicity on the HepG2 cells compared to the control by a decrease in viability of about 26% after 48 h based on cell apoptosis. The results showed that PreS1-Cur-CM11-CS NPs are capable of targeted and specific drug release against HepG2 cancer cells and have significant potential to fight this cancer.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7810,\"journal\":{\"name\":\"Amino Acids\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Amino Acids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00726-024-03438-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amino Acids","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00726-024-03438-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,利用阳离子多肽作为具有抗癌活性的替代药物受到了人们的关注。本研究利用包被Pres1的壳聚糖纳米颗粒(CS NPs)靶向肝癌细胞的SB3抗原(Pres1 -Cur-CM11-CS NPs),评价了姜黄素(Cur)和CM11肽单独或共同靶向释放肝癌细胞(HCC)的效果。SB3蛋白是HCC的特异性抗原,PreS1肽是乙型肝炎抗原的一部分,可特异性结合SB3蛋白。用壳聚糖制备NPs。在CS溶液中加入适当浓度的药物以加载Cur和CM11。使用EDC催化剂将Pres1偶联到NPs表面,使NPs靶向HepG2细胞。SEM和DLS分析证实,PreS1-Cur-CM11-CS NPs的尺寸约为132 nm,是穿透细胞膜的理想尺寸。Cur和CM11的负荷量分别为87%和65%,在酸性环境中比在生理环境中有更好的持续释放。MTT实验表明,PreS1-Cur-CM11-CS NPs对HepG2细胞具有靶向性和特异性作用,与对照组相比,PreS1-Cur-CM11-CS NPs对HepG2细胞的毒性最高,在细胞凋亡的基础上,48 h后细胞活力下降约26%。结果表明,PreS1-Cur-CM11-CS NPs能够靶向和特异性释放HepG2癌细胞,具有显著的抗癌潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeted delivery of curcumin and CM11 peptide against hepatocellular carcinoma cells based on binding affinity of PreS1-coated chitosan nanoparticles to SB3 protein

In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein. Chitosan was used to prepare NPs. To Cur and CM11 loading, drugs were added to the CS solution in appropriate concentrations. Pres1 was coupled to the surface of the NPs using EDC catalyst to target NPs against HepG2 cells. SEM and DLS analysis confirmed that the PreS1-Cur-CM11-CS NPs had a size of about 132 nm, the ideal size for penetrating the cell membrane. The loading of Cur and CM11 was equal to 87% and 65%, respectively, which had a sustained and better release in the acidic environment than in the physiological environment. The MTT assay showed that PreS1-Cur-CM11-CS NPs act in a targeted and specific manner with the highest toxicity on the HepG2 cells compared to the control by a decrease in viability of about 26% after 48 h based on cell apoptosis. The results showed that PreS1-Cur-CM11-CS NPs are capable of targeted and specific drug release against HepG2 cancer cells and have significant potential to fight this cancer.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Amino Acids
Amino Acids 生物-生化与分子生物学
CiteScore
6.40
自引率
5.70%
发文量
99
审稿时长
2.2 months
期刊介绍: Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered. Fields of interest include: Biochemistry, food chemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, gastroenterology, microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信