A. V. Nitsenko, V. N. Volodin, X. A. Linnik, F. Kh. Tuleutay, N. M. Burabaeva
{"title":"Distillation Recovery of Tellurium from Copper Telluride in Oxide Forms","authors":"A. V. Nitsenko, V. N. Volodin, X. A. Linnik, F. Kh. Tuleutay, N. M. Burabaeva","doi":"10.3103/S1067821222030105","DOIUrl":"10.3103/S1067821222030105","url":null,"abstract":"<p>The results of study aimed at extraction of tellurium from its compound with copper in the form of oxides by the pyrometallurgical method are presented in the paper. Technical copper telluride of Kazakhmys Corporation LLP containing crystalline phases (%) 36.5 Cu<sub>7</sub>Te<sub>4</sub>, 28.5 Cu<sub>5</sub>Te<sub>3</sub>, 12.9 Cu<sub>2</sub>Te, 16.2 Cu<sub>2.5</sub>SO<sub>4</sub>(OH)<sub>3</sub>·2H<sub>2</sub>O, and 6.0 Cu<sub>3</sub>(SO<sub>4</sub>)(OH)<sub>4</sub> was used as an object of research. As a result of the physical and chemical research and technological experiments, the fundamental possibility of processing technical copper telluride by oxidative distillation roasting with the extraction of tellurium into a separate product has been shown. Air oxygen was used as an oxidant. It has been established that a pressure decrease in the range of 80–0.67 kPa at the same temperature entails an increase in the degree of tellurium extraction. However, from a technological point of view, the value of the degree of tellurium extraction (93.0–98.0%) at all pressures (within 1 h) is achieved at a temperature of 1100°C. Increasing the exposure to 3 h has a minor beneficial effect. Diffractometric studies of cinders from technological experiments showed a decrease in the content of copper oxides in the pressure range of 80–40 kPa and an increase in the content of the Cu<sub>3</sub>TeO<sub>6</sub> phase. With a subsequent increase in rarefaction from 40 to 0.67 kPa, there is a noticeable decrease in the amount of cuprite and, as a consequence, a sharp increase in the amount of cuprous oxide. A slowdown in the increase in the amount was noted for copper tellurate at pressures of 40–20 kPa, and a sharp drop in its content was noted at pressures below 13.3 kPa. The derived condensate is a free-flowing mixture of crystalline phases of tellurium dioxide (67.7%) and tellurium oxysulfate (32.3%). This condensate is a middling product for further production of elemental tellurium.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4211644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cong Li, Rong Liang Zhang, Jia Zeng, Chao Fan Tang, Wei Zhang, Jin Tao Cao, Yu Qian Tao, Jia Jun Li, Cheng Wang, Yi Fu He
{"title":"Arsenic Reduction Kinetics during Vacuum Carbothermal Reduction of Dust with High Content of Arsenic and Copper","authors":"Cong Li, Rong Liang Zhang, Jia Zeng, Chao Fan Tang, Wei Zhang, Jin Tao Cao, Yu Qian Tao, Jia Jun Li, Cheng Wang, Yi Fu He","doi":"10.3103/S1067821222030026","DOIUrl":"10.3103/S1067821222030026","url":null,"abstract":"<div><p>In this study, arsenic removal was carried out via low-temperature vacuum carbothermal reduction method by utilizing dust containing higher content of arsenic and copper from pyrometallurgical refining furnaces of copper as raw materials. Effect of various factors such as reduction temperature, residual pressure, reductant dosage and time on the removal rate of arsenic was investigated and explored in detail. Arsenic reduction kinetics was analyzed and elaborated in detail on the basis of “shrinking-core model”. The results show that arsenic removal rate is enhanced with low reduction temperature and increasing amount of reduction dose, and decreasing residual pressure. Arsenic reduction removal is indicated to be controlled by ash diffusion. Apparent activation energy ~15.96 kJ/mol is determined for the reaction in the temperature range of 623–773 K. The kinetic equations for arsenic removal during vacuum carbothermal reduction can be described as 1 – 2<i>a</i>/3 – (1 – <i>a</i>)<sup>2/3</sup> = 0.05774 exp[–1919.05/<i>T</i>]<i>t</i>.</p></div>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4212371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Analysis of Microstructure and Mechanical Properties in B4C Reinforced Al–Zn Alloy Matrix Composites Manufactured Using a New Sintering Approach","authors":"Uğur Avci","doi":"10.3103/S1067821222030129","DOIUrl":"10.3103/S1067821222030129","url":null,"abstract":"<p>The present study aims to propose a new and non-complex sintering method in powder metallurgy in order to manufacture a light material with high mechanical properties. The proposed new sintering method is based on the principle that compaction is applied to a heated sample following classical sintering method. In this way, microstructure and mechanical properties of new samples manufactured using the proposed post sintering compaction method were compared with the samples manufactured using classical sintering method. In this context, in order to find the most optimal Al–Zn alloy ratio, different weight percentages of Zn (5–15–25–35–45%) were added to Al. When the manufactured alloys with classical sintering and post sintering compaction methods were compared, the most optimal alloy ratio was observed to be 15% Zn (Al–15Zn) manufactured using post sintering compaction method. In the next step, the matrix alloy with the most optimal ratio was reinforced with B<sub>4</sub>C in different weight percentages (1–2–3%) to manufacture Al matrix composites using post sintering compaction method. The microstructure analysis of the manufactured samples demonstrated that reinforcement particles were generally located at the grain boundaries and these particles caused the presence of porosities around them. In addition, mechanical test results indicated that increasing reinforcement ratio affected mechanical properties negatively. It can be thus concluded that a composite material with 1% B<sub>4</sub>C reinforcement ratio was superior to matrix alloy (Al–15Zn) in terms of microstructure, density, absorbed energy, hardness and compressive strength, and thus it is a critical reinforcement ratio in improving material properties.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4214602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Experimental Testing of the Technology for Producing Deformed Bars of Alloy D16T from Continuously Casting Billets of Small Diameter with Low Elongation Ratios","authors":"S. P. Galkin, A. S. Aleshchenko, Yu. V. Gamin","doi":"10.3103/S1067821222030063","DOIUrl":"10.3103/S1067821222030063","url":null,"abstract":"<p>The article describes the development and pilot-industrial testing of the technology for producing bars from aluminum alloy D16T obtained by radial-shear rolling (RSR) from continuously cast billets (CCB) with a diameter of 72 mm in several passes. The actual dimensions of the rolled bars were within ±0.16 mm for all bar diameters, which is significantly less than the diameter tolerance stipulated by the requirements of GOST 21488–97. According to the results of tensile tests, the values of ultimate strength, conventional yield strength, relative elongation, and relative reduction were determined. The requirements of the regulatory documents for the ultimate strength and relative elongation for the D16T alloy are satisfied with a total elongation ratio of more than 4.2. In terms of plastic properties, the obtained bars are 2.1–2.5 times higher than the requirements of GOST in the entire range of investigated elongation ratios, starting from 2.07. At the same time, there is an increase in the relative elongation by 5.7–6.8 times in comparison with the initial cast state. The performed analysis of the microstructure and morphology of the secondary phases showed that, with a decrease in the diameter of the bar (with an increase in the total elongation ratio), the average particle size of the α(AlFeMnSi) phase insoluble in the aluminum matrix decreases, which is a consequence of the development of deformation processes during rolling. Additional grinding of inclusions during deformation processing can significantly reduce the possible negative effect of the insoluble phase on the mechanical properties of the resulting bars, in particular, on the property of plasticity. The analysis of the microstructure showed that the bars after rolling and heat treatment do not have cracks, looseness, delamination, and other defects and meet the requirements of GOST 21488–97.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4547394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of parameters used for melt processing by nanosecond electromagnetic pulses on the structure formation of cast aluminum matrix composites","authors":"V. Deev, E. Ri, E. Prusov, M. Ermakov, E. D. Kim","doi":"10.17073/0021-3438-2022-3-30-37","DOIUrl":"https://doi.org/10.17073/0021-3438-2022-3-30-37","url":null,"abstract":" The paper focuses on establishing the effect of nanosecond electromagnetic pulses (NEPs) with different amplitudes on the formation of the structure of cast aluminum matrix composites of the Al–Mg2Si pseudobinary system with hypoeutectic (5 wt. % Mg2Si) and hypereutectic (15 wt. % Mg2Si) compositions. As the NEP generator amplitude in composites containing 5 and 15 wt. % Mg2Si increases, the matrix alloy structural components (α-solid solution and eutectic) are refined, while no significant differences in the sizes and morphology of Mg2Si primary crystals were observed in the hypereutectic range of compositions. Presumably, the observed nature of the NEP effect on the structure of composites in the hypereutectic region of compositions is associated with the features of their crystallization behavior. The temperature range of the L + Mg2Si two-phase region presence is much lower than NEP irradiation temperatures. Apparently, this is the reason why NEPs have no effect on the thermodynamic state of Mg2Si primary crystal/melt interfaces. It was shown that a promising option for the simultaneous modifying effect on all structural components of Al–Mg2Si aluminum matrix composites (solid solution, eutectic, Mg2Si primary particles) is a combination of thermal-rate treatment and irradiation of melts by NEPs, as well as additional melt processing by NEPs during crystallization.","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73207723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rational technology for separation of yttrium-group rare-earth elements","authors":"A. Valkov, V. Petrov","doi":"10.17073/0021-3438-2022-3-21-29","DOIUrl":"https://doi.org/10.17073/0021-3438-2022-3-21-29","url":null,"abstract":" The paper studies the features of the extraction technology used to separate yttrium-group rare-earth elements taking into account sharply reducing prices for individual oxides. The latter, along with the low prices for lanthanum and cerium oxides, is associated with a predominant increase in the consumption of praseodymium and neodymium and a slow increase in the consumption of other rare-earth elements (REE), except for terbium and dysprosium. Since all REE are extracted from rare-earth concentrates, less marketable ones are stored or sold at extremely low prices. Elements such as samarium, europium, gadolinium, dysprosium are used in high-tech instruments and devices. At the same time, some low-profit production is possible, but process solutions must certainly be developed providing for minimum costs and be the most cost-effective. The authors propose a technology for separating yttrium-group elements including yttrium isolation stages in a single-stage mode by extraction with a mixture of three extractants (25 vol.% trialkylmethylammonium nitrate – 20 vol. % tributyl phosphate – 20 vol.% higher isomeric carboxylic acid) followed by separation of the triad of elements (samarium-europium-gadolinium) by extraction with organophosphoric acids: 30 vol.% solution of di-2-ethylhexylphosphoric acid or 30 vol.% solution of bis(2,4,4-trimethylpentyl)-phosphinic acid. At the last operation, yttrium-group REE concentrates are isolated simultaneously. The process is conducted in the conditions of complete internal irrigation with the 30 vol.% solution of bis(2,4,4-trimethylpentyl)-phosphinic acid used as an extractant. Initially, all the extraction cascade cells are filled with the initial solution. Separation zones are formed in the extraction cascade with the accumulation of terbium-dysprosium, holmium-erbium and thulium-ytterbium-lutetium concentrates in some cells. Once the products are accumulated, the concentrate solution is drained from cells, and the process starts again. If there is a need in some yttrium-group element, the corresponding binary or ternary concentrate is separated with the isolation of the element required.","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78647482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Nikitin, V. I. Nikitin, I. Timoshkin, R. Biktimirov, A. P. Novikov
{"title":"Hereditary influence of deformed waste on the efficiency of Al–Si–Mg and Al–Mg alloy modification","authors":"K. Nikitin, V. I. Nikitin, I. Timoshkin, R. Biktimirov, A. P. Novikov","doi":"10.17073/0022-3438-2022-3-38-46","DOIUrl":"https://doi.org/10.17073/0022-3438-2022-3-38-46","url":null,"abstract":" The paper provides the results of studies into the effect of the charge composition on the structure and mechanical properties of Al–Si–Mg (AK9ch) and Al–Mg (AMg6l) cast aluminum alloys. It was shown that deformed waste included in the charge composition (electrical waste of aluminum and waste of beverage cans based on the 3104 alloy – for AK9ch; AMg6 alloy plates – for AMg6l) contributes to the formation of dispersed micro- and macrostructure of working alloys in the solid state. The effect of modification (AlSr20 master alloy – for AK9ch; AlTi5 master alloy – for AMg6l) on the structure and mechanical properties of alloys obtained with various charge options was studied. Experiments on the effect of the charge composition on the AK9ch and AMg6l modifiability showed that the deformed waste structure is partially inherited by working alloys through the liquid state. With similar chemical compositions, alloys obtained with an increased proportion of deformed waste in the charge composition feature by smaller micro- and macrostructure sizes and improved mechanical properties (tensile strength and tensile elongation). It was found that when a certain amount of the modifier element (0.06 % Sr for the AK9ch alloy; 0.04 % Ti for the AMg6l alloy) is exceeded in these alloys, the over-modification effect appears. This is expressed in enlarged micro- and macrostructure parameters, as well as lowered tensile strength. The results obtained show that the optimal amount of the deformed waste proportion in the charge composition will make it possible to reduce the consumption of expensive modifying master alloys with a guaranteed effect of modification in practice.","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78220645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Koltygin, V. Bazhenov, S. Tavolzhanskii, S. Matveev, I. V. Plisetskaya, M. V. Belov, A. Samokhin, V. Belov
{"title":"Production of filler rods for repair welding of ML12 (ZK51) magnesium alloy castings","authors":"A. Koltygin, V. Bazhenov, S. Tavolzhanskii, S. Matveev, I. V. Plisetskaya, M. V. Belov, A. Samokhin, V. Belov","doi":"10.17073/0021-3438-2022-3-47-56","DOIUrl":"https://doi.org/10.17073/0021-3438-2022-3-47-56","url":null,"abstract":" In magnesium alloys castings, the casting defects such as shrinkage porosity are often occur. Such defects can be suppressed by repair welding or surfacing using a special filler rod. Unfortunately, in Russia, the low amount of filler rod is consumed. Therefore, native enterprises do not manufacture it, limiting themselves to imports or homemade low-quality substitutes. Nevertheless, there is a need for filler rod, and recently it has become unprofitable to replace them with imported materials due to a significantly increased price. Therefore, there is a need to study the technology of its production to replace imported filler rod with native material. Magnesium alloys based on the Mg–Zn–Zr (La, Nd) system: SV1, SV122, and ML12 (ZK51) that used as a filler rod for repair welding of ZK51 alloy castings were studied in this work. The samples were obtained by permanent mold casting into aluminum molds followed by hot extrusion into a filler rod with a diameter of 4 mm. It was shown that all the investigated alloys could be obtained in the form of a rod with a diameter of 4 mm. Therefore, the investigated rod samples from the SV122 alloy were used as filler material for repair welding of ZK51 magnesium alloy castings. The weld seam in the T1 condition has an ultimate tensile strength (UTS) about 80 % of the UTS of the casting material.","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82266684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. V. Bulatov, V. P. Zhukov, E. V. Bratygin, N. A. Tomilov, V. A. Menshikov
{"title":"Investigation of Pobeda Furnace Bubbling Zone Physics Using Cold Modeling Method. Part 2. Hydro-Gas Dynamics of Liquid Blowing by Gas Using Bottom Gas-Protected Lance","authors":"K. V. Bulatov, V. P. Zhukov, E. V. Bratygin, N. A. Tomilov, V. A. Menshikov","doi":"10.3103/S1067821222020031","DOIUrl":"10.3103/S1067821222020031","url":null,"abstract":"<p>Cold flow simulation of Pobeda furnace bubbled bath hydro-gas dynamics was performed using a bottom gas-protected lance. It was shown that gas infusion into liquid at Archimedes criterion Ar = 5–60 is carried out in the pulse-coupled regime. The area of gas and liquid interaction was investigated at Ar = idem for separated and united air egress through ring and round nozzles. At all considered values of Ar, a two-phase zone was formed in liquid that was composed of “leg” with different geometrical shape, cavity, and gas-liquid layer over the bath surface. Characteristic features of blowing zone formation, flame configuration, and its structure in relation to the blow injection configuration and Ar values were found. It was detected that, at intense blowing through the lance center and ring gap, an ejected liquid prevailed in the cavity structure, the content of which increased upon increase in gas consumption in shell, but near the nozzle face, the “leg” is composed of the gas phase. A hypothesis was formulated that the presence of an additional amount of sulfide melt in oxidative streamline provides more complete magnetite destruction in the bath volume and at close proximity of the nozzle provides formation of a protective coating. The sizes of the most indicative geometrical areas of flame were quantified, which gave evidence about periodic and extreme behavior of jet spread in liquid. Empirical equations of the relation between maximum linear and across “leg” sizes at dynamical conditions of blow injection in shell (Ar<sub>shell</sub>) and central tube (Ar<sub>c</sub>) are obtained for two values Ar<sub>shell</sub> ≥ Ar<sub>c</sub>and Ar<sub>shell</sub> ≤ Ar<sub>c</sub>. It was estimated that blow injection in shell increases extension velocity of the “leg” on the nozzle face to 137 mm/s. The dependence of average height (<i>H</i><sub>avg</sub>, m) of splash lift over calm bath surface was defined, which at 25 ≥ Ar<sub>shell</sub> ≥ 5 and 60 ≥ Ar<sub>c</sub> ≥ 12 has the form <i>H</i><sub>avg</sub> = 0.027(Ar<sub>shell</sub> + Ar<sub>c</sub>)<sup>0.27</sup>. Using Schlichting’s equation, a value of maximum offset from the nozzle surface where cooperative axial movement in liquid of ring and round flow with isovelocity is preserved is calculated. It is proposed that a protective effect of bottom lance with shell appears in the lance belt area over a distance of 7–10 cm from the nozzle surface. The cavity after separation from the nozzle moves down vertically, but countercurrent liquid flow bounding on the cavity front moves in the opposite direction, flowing around the phase interface with comparable velocity. On the basis of more intense change in the transverse size of the interaction zone in the nozzle area and noticeable sideways liquid movement, it was recommended to take corrective action for decreasing the action of melt erosion in the lance belt of the Pobeda furnace on the entrance region of flow development.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5137885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. P. Zykova, A. V. Vorontsov, A. V. Chumaevskii, D. A. Gurianov, A. V. Gusarova, N. L. Savchenko, E. A. Kolubaev
{"title":"The Influence of Multipass Friction Stir Processing on Formation of Microstructure and Mechanical Properties of Ti6Al4V Alloy","authors":"A. P. Zykova, A. V. Vorontsov, A. V. Chumaevskii, D. A. Gurianov, A. V. Gusarova, N. L. Savchenko, E. A. Kolubaev","doi":"10.3103/S1067821222020146","DOIUrl":"10.3103/S1067821222020146","url":null,"abstract":"<p>Friction stir processing (FSP) is an advanced technology of surface modification of microstructure of metals and alloys in order to improve mechanical and operational properties. Previous works on processing of titanium alloys demonstrated that variation of FSP process variables (such аnticlockwise rotation rate, processing speed and plunge force) significantly influences on evolution of microstructure and mechanical properties of Ti6Al4V alloy. However, the influence of multipass FSP on Ti6Al4V alloy has not been studied. Thus, this work studied the influence of four-pass FSP of Ti6Al4V titanium alloy on evolution of microstructure and mechanical properties of this alloy. Analysis of the microstructure has demonstrated that, in the stir zone, a heterogeneous microstructure is formed with dynamically recrystallized equiaxial α and β grains and β regions with α phase of acicular and laminar types, which is related to the temperature gradient of the stir zone during FSP. It has been established that, with increase in the number of FSP passes to three, there is an increase in ultimate strength (up to 1173 MPa) and wear resistance (by 33%). Improvement of the ultimate strength after three passes of FSP is dictated by a decrease in grain size in the stir zone by 88% in comparison with the initial Ti6Al4V alloy. It has been demonstrated that, after four passes of FSP in the stir zone, an increase in the gain size and a decrease in the ultimate strength to 686 MPa occur, which is related to formation of coarse defects along the contours of metal flows. At the same time, the wear resistance of Ti6Al4V alloy after four passes of FSP increases by 39% in comparison with the initial material.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5138819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}