M. V. Barkov, O. I. Mamzurina, M. V. Glavatskikh, R. Yu. Barkov, A. V. Pozdniakov
{"title":"含铁、硅杂质Al-Cu-Yb合金的结构与性能","authors":"M. V. Barkov, O. I. Mamzurina, M. V. Glavatskikh, R. Yu. Barkov, A. V. Pozdniakov","doi":"10.3103/S1067821222040034","DOIUrl":null,"url":null,"abstract":"<p>The effect of iron and silicon impurities on the phase composition and properties of the Al–4.3Cu–2.2Yb quasi-binary alloy has been determined. In the microstructure of the cast alloy, in addition to the aluminum solid solution and dispersed eutectic ((Al) + Al<sub>8</sub>Cu<sub>4</sub>Yb), in which about 1% of iron is dissolved, the Al<sub>3</sub>Yb/(Al,Cu)<sub>17</sub>Yb<sub>2</sub> and Al<sub>80</sub>Yb<sub>5</sub>Cu<sub>6</sub>Si<sub>8</sub> phases are identified, which are not found in an alloy of a similar composition without impurities. After homogenization annealing at a temperature of 590°C for 3 h, the structure is represented by compact fragmented and coagulated intermetallic compounds 1–2 μm in size and a solid solution (Al) with a maximum copper content of 2.1%. The hardness of the deformed sheets significantly decreases after 0.5 h and changes slightly up to 6 h of annealing at temperatures of 150–210°C. After annealing at 180°C for 3 h, a substructure with a subgrain size of 200–400 nm is formed in the alloy structure. The softening after annealing of the rolled sheets at temperatures up to 250°C occurs owing to the recovery and polygonization processes and above 300°C owing to recrystallization. After annealing for 1 h at 300°C, the recrystallized grain size is 7 μm. The grain size increases to 16 µm after annealing for 1 h at 550°C. The Al–4.3Cu–2.2Yb alloy with impurities has a conditional yield strength of 205–273 MPa, a tensile strength of 215–302 MPa, and a relative elongation of 2.3–5.6% in the rolled alloy after annealing. Iron and silicon impurities do not lead to the formation of coarse lamellar intermetallic phases and do not reduce the ductility of the investigated alloy.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"63 4","pages":"434 - 440"},"PeriodicalIF":0.6000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structure and Properties of Al–Cu–Yb Alloy with Iron and Silicon Impurities\",\"authors\":\"M. V. Barkov, O. I. Mamzurina, M. V. Glavatskikh, R. Yu. Barkov, A. V. Pozdniakov\",\"doi\":\"10.3103/S1067821222040034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of iron and silicon impurities on the phase composition and properties of the Al–4.3Cu–2.2Yb quasi-binary alloy has been determined. In the microstructure of the cast alloy, in addition to the aluminum solid solution and dispersed eutectic ((Al) + Al<sub>8</sub>Cu<sub>4</sub>Yb), in which about 1% of iron is dissolved, the Al<sub>3</sub>Yb/(Al,Cu)<sub>17</sub>Yb<sub>2</sub> and Al<sub>80</sub>Yb<sub>5</sub>Cu<sub>6</sub>Si<sub>8</sub> phases are identified, which are not found in an alloy of a similar composition without impurities. After homogenization annealing at a temperature of 590°C for 3 h, the structure is represented by compact fragmented and coagulated intermetallic compounds 1–2 μm in size and a solid solution (Al) with a maximum copper content of 2.1%. The hardness of the deformed sheets significantly decreases after 0.5 h and changes slightly up to 6 h of annealing at temperatures of 150–210°C. After annealing at 180°C for 3 h, a substructure with a subgrain size of 200–400 nm is formed in the alloy structure. The softening after annealing of the rolled sheets at temperatures up to 250°C occurs owing to the recovery and polygonization processes and above 300°C owing to recrystallization. After annealing for 1 h at 300°C, the recrystallized grain size is 7 μm. The grain size increases to 16 µm after annealing for 1 h at 550°C. The Al–4.3Cu–2.2Yb alloy with impurities has a conditional yield strength of 205–273 MPa, a tensile strength of 215–302 MPa, and a relative elongation of 2.3–5.6% in the rolled alloy after annealing. Iron and silicon impurities do not lead to the formation of coarse lamellar intermetallic phases and do not reduce the ductility of the investigated alloy.</p>\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":\"63 4\",\"pages\":\"434 - 440\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1067821222040034\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1067821222040034","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Structure and Properties of Al–Cu–Yb Alloy with Iron and Silicon Impurities
The effect of iron and silicon impurities on the phase composition and properties of the Al–4.3Cu–2.2Yb quasi-binary alloy has been determined. In the microstructure of the cast alloy, in addition to the aluminum solid solution and dispersed eutectic ((Al) + Al8Cu4Yb), in which about 1% of iron is dissolved, the Al3Yb/(Al,Cu)17Yb2 and Al80Yb5Cu6Si8 phases are identified, which are not found in an alloy of a similar composition without impurities. After homogenization annealing at a temperature of 590°C for 3 h, the structure is represented by compact fragmented and coagulated intermetallic compounds 1–2 μm in size and a solid solution (Al) with a maximum copper content of 2.1%. The hardness of the deformed sheets significantly decreases after 0.5 h and changes slightly up to 6 h of annealing at temperatures of 150–210°C. After annealing at 180°C for 3 h, a substructure with a subgrain size of 200–400 nm is formed in the alloy structure. The softening after annealing of the rolled sheets at temperatures up to 250°C occurs owing to the recovery and polygonization processes and above 300°C owing to recrystallization. After annealing for 1 h at 300°C, the recrystallized grain size is 7 μm. The grain size increases to 16 µm after annealing for 1 h at 550°C. The Al–4.3Cu–2.2Yb alloy with impurities has a conditional yield strength of 205–273 MPa, a tensile strength of 215–302 MPa, and a relative elongation of 2.3–5.6% in the rolled alloy after annealing. Iron and silicon impurities do not lead to the formation of coarse lamellar intermetallic phases and do not reduce the ductility of the investigated alloy.
期刊介绍:
Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.