湿膜加热条件下浮选效率的基本原理

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
S. Evdokimov, T. Gerasimenko
{"title":"湿膜加热条件下浮选效率的基本原理","authors":"S. Evdokimov, T. Gerasimenko","doi":"10.17073/0021-3438-2022-5-4-18","DOIUrl":null,"url":null,"abstract":"When studying the aggregative stability of dispersed systems by sediment volumetry, nanobubbles are formed due to water structure imperfections in the contact area, and the coalescence of nanobubbles results in a hydrophobic attraction force. Changes in the aggregative stability of aqueous dispersions of particles can be explained as follows: water molecules with a high potential of interaction with medium molecules are difficult to flow into the interfacial gap between particle surfaces, and the outflow of water molecules with a high intensity of interaction with a solid surface is impaired. Excessive osmotic pressure between hydrophilic surfaces causes their hydrophilic repulsion, and excessive osmotic pressure of the surrounding water (reduced osmotic pressure between surfaces) causes hydrophobic attraction of the surfaces. To change the result of flotation, it is sufficient to bring the heat flow to a thin liquid layer of nanoscale thickness with the action of forces of structural origin localized inside, which determine the stability of wetting films. To increase the temperature in the interfacial gap between theparticle and the bubble due to the heat of water vapor condensation, it is proposed to use a mixture of air with hot water vapor as a gas during flotation. The developed flotation method was tested in the flotation of gold-bearing ores. The rational vapor consumption determined based on the factorial experiment results is 10.7·10–3 kg/(s·m2) at a xanthate consumption of 1.74 g/t. The rougher flotation operation used a jet method of flotation circuit design, which provides for the combination of the initial feed and the rough concentrate. In comparison with ore flotation according to the factory scheme, the yield of concentrate sent for hydrometallurgical processing is 23.4 rel.% less while maintaining the gold recovery level achieved.","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"58 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rationale for efficiency of flotation in the conditions of wetting film heating\",\"authors\":\"S. Evdokimov, T. Gerasimenko\",\"doi\":\"10.17073/0021-3438-2022-5-4-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When studying the aggregative stability of dispersed systems by sediment volumetry, nanobubbles are formed due to water structure imperfections in the contact area, and the coalescence of nanobubbles results in a hydrophobic attraction force. Changes in the aggregative stability of aqueous dispersions of particles can be explained as follows: water molecules with a high potential of interaction with medium molecules are difficult to flow into the interfacial gap between particle surfaces, and the outflow of water molecules with a high intensity of interaction with a solid surface is impaired. Excessive osmotic pressure between hydrophilic surfaces causes their hydrophilic repulsion, and excessive osmotic pressure of the surrounding water (reduced osmotic pressure between surfaces) causes hydrophobic attraction of the surfaces. To change the result of flotation, it is sufficient to bring the heat flow to a thin liquid layer of nanoscale thickness with the action of forces of structural origin localized inside, which determine the stability of wetting films. To increase the temperature in the interfacial gap between theparticle and the bubble due to the heat of water vapor condensation, it is proposed to use a mixture of air with hot water vapor as a gas during flotation. The developed flotation method was tested in the flotation of gold-bearing ores. The rational vapor consumption determined based on the factorial experiment results is 10.7·10–3 kg/(s·m2) at a xanthate consumption of 1.74 g/t. The rougher flotation operation used a jet method of flotation circuit design, which provides for the combination of the initial feed and the rough concentrate. In comparison with ore flotation according to the factory scheme, the yield of concentrate sent for hydrometallurgical processing is 23.4 rel.% less while maintaining the gold recovery level achieved.\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17073/0021-3438-2022-5-4-18\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17073/0021-3438-2022-5-4-18","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在用沉积物体积法研究分散体系的聚集稳定性时,由于接触区域的水结构缺陷而形成纳米气泡,纳米气泡的聚并产生疏水引力。颗粒在水中分散体聚集稳定性的变化可以解释为:与介质分子具有高相互作用势的水分子难以流入颗粒表面之间的界面间隙,与固体表面具有高相互作用强度的水分子流出受到损害。亲水性表面之间过大的渗透压会引起亲水性排斥,而周围水过大的渗透压(表面间渗透压降低)会引起表面的疏水性吸引。要改变浮选结果,只需在内部局部结构源力的作用下,将热流引入纳米级厚度的薄液层即可,这决定了润湿膜的稳定性。为了提高颗粒与气泡界面间隙由于水蒸气凝结产生的热量而产生的温度,建议在浮选过程中使用空气与热水蒸气的混合物作为气体。该方法已在某含金矿石的浮选中进行了试验。在黄原药用量为1.74 g/t时,根据析因试验结果确定的合理蒸汽耗量为10.7·10-3 kg/(s·m2)。粗选作业采用射流浮选回路设计方法,使初始进料与粗精矿相结合。与按工厂方案浮选矿石相比,在保证金回收率的前提下,湿法浮选精矿的产率降低了23.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rationale for efficiency of flotation in the conditions of wetting film heating
When studying the aggregative stability of dispersed systems by sediment volumetry, nanobubbles are formed due to water structure imperfections in the contact area, and the coalescence of nanobubbles results in a hydrophobic attraction force. Changes in the aggregative stability of aqueous dispersions of particles can be explained as follows: water molecules with a high potential of interaction with medium molecules are difficult to flow into the interfacial gap between particle surfaces, and the outflow of water molecules with a high intensity of interaction with a solid surface is impaired. Excessive osmotic pressure between hydrophilic surfaces causes their hydrophilic repulsion, and excessive osmotic pressure of the surrounding water (reduced osmotic pressure between surfaces) causes hydrophobic attraction of the surfaces. To change the result of flotation, it is sufficient to bring the heat flow to a thin liquid layer of nanoscale thickness with the action of forces of structural origin localized inside, which determine the stability of wetting films. To increase the temperature in the interfacial gap between theparticle and the bubble due to the heat of water vapor condensation, it is proposed to use a mixture of air with hot water vapor as a gas during flotation. The developed flotation method was tested in the flotation of gold-bearing ores. The rational vapor consumption determined based on the factorial experiment results is 10.7·10–3 kg/(s·m2) at a xanthate consumption of 1.74 g/t. The rougher flotation operation used a jet method of flotation circuit design, which provides for the combination of the initial feed and the rough concentrate. In comparison with ore flotation according to the factory scheme, the yield of concentrate sent for hydrometallurgical processing is 23.4 rel.% less while maintaining the gold recovery level achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信