钇族稀土元素的合理分离技术

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
A. V. Valkov, V. I. Petrov
{"title":"钇族稀土元素的合理分离技术","authors":"A. V. Valkov,&nbsp;V. I. Petrov","doi":"10.3103/S1067821222040125","DOIUrl":null,"url":null,"abstract":"<p>The features of the extraction technology for the separation of rare-earth elements (REEs) of the yttrium group are considered with regard to the sharp reduction in the price of individual oxides. The price reduction has the same nature as the low prices of lanthanum and cerium oxides and is associated with a predominant increase in the consumption of praseodymium and neodymium and a slow increase in the consumption of other REEs, with the exception of terbium and dysprosium. Since all REEs are extracted from rare-earth concentrates, less in demand ones are stored or sold at very low prices. Elements such as samarium, europium, gadolinium, and dysprosium are used in high-tech instruments and devices. In this case, it is possible to allow the operation of low-profit production, but technological solutions must certainly be built taking into account the minimum costs and be the most economically effective. The authors propose a technology for separating elements of the yttrium group including the stages of isolation of yttrium in a single-stage mode by extraction with a mixture of three extractants (25 vol % trialkylmethylammonium nitrate–20 vol % tributyl phosphate–20 vol % higher isomeric carboxylic acid), followed by separation of the triad of elements samarium–europium–gadolinium by extraction with organophosphoric acids (30 vol % solution of di-2-ethylhexylphosphoric acid or 30 vol % solution of bis(2,4,4-trimethylpentyl)-phosphinic acid). In the last operation, concentrates of the yttrium group REEs are isolated simultaneously. The process is carried out in the mode of complete internal irrigation using a 30 vol % solution of bis(2,4,4-trimethylpentyl)-phosphinic acid as an extractant. First, all cells of the cascade are filled with the initial solution. Separation zones are formed in the cells of the cascade with the accumulation of terbium–dysprosium, holmium–erbium, and thulium–ytterbium–lutetium concentrates. After the accumulation of products, the solution of concentrates is drained from the cells and the process starts again. If there is a need for any element of the yttrium group, the corresponding binary or ternary concentrate is separated to isolate the required element.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"63 4","pages":"385 - 391"},"PeriodicalIF":0.6000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Technology for Separation of Rare-Earth Elements of the Yttrium Group\",\"authors\":\"A. V. Valkov,&nbsp;V. I. Petrov\",\"doi\":\"10.3103/S1067821222040125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The features of the extraction technology for the separation of rare-earth elements (REEs) of the yttrium group are considered with regard to the sharp reduction in the price of individual oxides. The price reduction has the same nature as the low prices of lanthanum and cerium oxides and is associated with a predominant increase in the consumption of praseodymium and neodymium and a slow increase in the consumption of other REEs, with the exception of terbium and dysprosium. Since all REEs are extracted from rare-earth concentrates, less in demand ones are stored or sold at very low prices. Elements such as samarium, europium, gadolinium, and dysprosium are used in high-tech instruments and devices. In this case, it is possible to allow the operation of low-profit production, but technological solutions must certainly be built taking into account the minimum costs and be the most economically effective. The authors propose a technology for separating elements of the yttrium group including the stages of isolation of yttrium in a single-stage mode by extraction with a mixture of three extractants (25 vol % trialkylmethylammonium nitrate–20 vol % tributyl phosphate–20 vol % higher isomeric carboxylic acid), followed by separation of the triad of elements samarium–europium–gadolinium by extraction with organophosphoric acids (30 vol % solution of di-2-ethylhexylphosphoric acid or 30 vol % solution of bis(2,4,4-trimethylpentyl)-phosphinic acid). In the last operation, concentrates of the yttrium group REEs are isolated simultaneously. The process is carried out in the mode of complete internal irrigation using a 30 vol % solution of bis(2,4,4-trimethylpentyl)-phosphinic acid as an extractant. First, all cells of the cascade are filled with the initial solution. Separation zones are formed in the cells of the cascade with the accumulation of terbium–dysprosium, holmium–erbium, and thulium–ytterbium–lutetium concentrates. After the accumulation of products, the solution of concentrates is drained from the cells and the process starts again. If there is a need for any element of the yttrium group, the corresponding binary or ternary concentrate is separated to isolate the required element.</p>\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":\"63 4\",\"pages\":\"385 - 391\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1067821222040125\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1067821222040125","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

考虑到分离钇族稀土元素的萃取技术的特点,个别氧化物的价格急剧下降。价格下降与镧和铈氧化物价格低的性质相同,并与镨和钕的消费显著增加以及除铽和镝以外的其他稀土的消费缓慢增加有关。由于所有的稀土都是从稀土精矿中提取的,需求量较小的稀土被储存起来或以极低的价格出售。钐、铕、钆和镝等元素被用于高科技仪器和设备。在这种情况下,允许低利润生产是可能的,但技术解决方案肯定必须考虑到最低成本和最经济有效。作者提出了一种分离钇族元素的技术,包括用三种萃取剂(25体积%三烷基甲基硝酸铵- 20体积%磷酸三丁酯- 20体积%高异构体羧酸)的混合物在单级萃取模式下分离钇的阶段;然后用有机磷酸(30 vol %的二-2-乙基己基磷酸溶液或30 vol %的二(2,4,4-三甲基戊基)膦酸溶液)萃取分离钐-铕-钆三元素。最后一道工序同时分离钇族稀土精矿。该过程以完全内灌的方式进行,使用30 vol %的(2,4,4-三甲基戊基)膦酸溶液作为萃取剂。首先,级联的所有单元都充满初始溶液。随着铽-镝、钬-铒和铥-镱-镥精矿的积累,在级联的细胞中形成分离区。产品积累后,浓缩液从细胞中排出,该过程再次开始。如果需要钇族中的任何一种元素,则分离出相应的二元或三元精矿,以分离出所需的元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational Technology for Separation of Rare-Earth Elements of the Yttrium Group

Rational Technology for Separation of Rare-Earth Elements of the Yttrium Group

The features of the extraction technology for the separation of rare-earth elements (REEs) of the yttrium group are considered with regard to the sharp reduction in the price of individual oxides. The price reduction has the same nature as the low prices of lanthanum and cerium oxides and is associated with a predominant increase in the consumption of praseodymium and neodymium and a slow increase in the consumption of other REEs, with the exception of terbium and dysprosium. Since all REEs are extracted from rare-earth concentrates, less in demand ones are stored or sold at very low prices. Elements such as samarium, europium, gadolinium, and dysprosium are used in high-tech instruments and devices. In this case, it is possible to allow the operation of low-profit production, but technological solutions must certainly be built taking into account the minimum costs and be the most economically effective. The authors propose a technology for separating elements of the yttrium group including the stages of isolation of yttrium in a single-stage mode by extraction with a mixture of three extractants (25 vol % trialkylmethylammonium nitrate–20 vol % tributyl phosphate–20 vol % higher isomeric carboxylic acid), followed by separation of the triad of elements samarium–europium–gadolinium by extraction with organophosphoric acids (30 vol % solution of di-2-ethylhexylphosphoric acid or 30 vol % solution of bis(2,4,4-trimethylpentyl)-phosphinic acid). In the last operation, concentrates of the yttrium group REEs are isolated simultaneously. The process is carried out in the mode of complete internal irrigation using a 30 vol % solution of bis(2,4,4-trimethylpentyl)-phosphinic acid as an extractant. First, all cells of the cascade are filled with the initial solution. Separation zones are formed in the cells of the cascade with the accumulation of terbium–dysprosium, holmium–erbium, and thulium–ytterbium–lutetium concentrates. After the accumulation of products, the solution of concentrates is drained from the cells and the process starts again. If there is a need for any element of the yttrium group, the corresponding binary or ternary concentrate is separated to isolate the required element.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信