Advances in Geometry最新文献

筛选
英文 中文
Inequalities for f *-vectors of lattice polytopes 格状多面体 f * 向量的不等式
IF 0.5 4区 数学
Advances in Geometry Pub Date : 2024-08-13 DOI: 10.1515/advgeom-2024-0002
Matthias Beck, Danai Deligeorgaki, Max Hlavacek, Jerónimo Valencia-Porras
{"title":"Inequalities for f *-vectors of lattice polytopes","authors":"Matthias Beck, Danai Deligeorgaki, Max Hlavacek, Jerónimo Valencia-Porras","doi":"10.1515/advgeom-2024-0002","DOIUrl":"https://doi.org/10.1515/advgeom-2024-0002","url":null,"abstract":"The Ehrhart polynomial ehr<jats:sub> <jats:italic>P</jats:italic> </jats:sub>(<jats:italic>n</jats:italic>) of a lattice polytope <jats:italic>P</jats:italic> counts the number of integer points in the <jats:italic>n</jats:italic>-th dilate of <jats:italic>P</jats:italic>. The <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vector of <jats:italic>P</jats:italic>, introduced by Felix Breuer in 2012, is the vector of coefficients of ehr<jats:sub> <jats:italic>P</jats:italic> </jats:sub>(<jats:italic>n</jats:italic>) with respect to the binomial coefficient basis <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2024-0002_eq_001.png\"/> <jats:tex-math>$begin{array}{} bigl{binom{n-1}{0},binom{n-1}{1},dots,binom{n-1}{d}bigr}, end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:italic>d</jats:italic> = dim <jats:italic>P</jats:italic>. Similarly to <jats:italic>h/h</jats:italic> <jats:sup>*</jats:sup>-vectors, the <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vector of <jats:italic>P</jats:italic> coincides with the <jats:italic>f</jats:italic>-vector of its unimodular triangulations (if they exist). We present several inequalities that hold among the coefficients of <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vectors of lattice polytopes. These inequalities resemble striking similarities with existing inequalities for the coefficients of <jats:italic>f</jats:italic>-vectors of simplicial polytopes; e.g., the first half of the <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-coefficients increases and the last quarter decreases. Even though <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vectors of polytopes are not always unimodal, there are several families of polytopes that carry the unimodality property. We also show that for any polytope with a given Ehrhart <jats:italic>h</jats:italic> <jats:sup>*</jats:sup>-vector, there is a polytope with the same <jats:italic>h</jats:italic> <jats:sup>*</jats:sup>-vector whose <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vector is unimodal.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations on the Weak Bounded Negativity Conjecture 弱边界否定性猜想的变体
IF 0.5 4区 数学
Advances in Geometry Pub Date : 2024-08-13 DOI: 10.1515/advgeom-2023-0027
Ciro Ciliberto, Claudio Fontanari
{"title":"Variations on the Weak Bounded Negativity Conjecture","authors":"Ciro Ciliberto, Claudio Fontanari","doi":"10.1515/advgeom-2023-0027","DOIUrl":"https://doi.org/10.1515/advgeom-2023-0027","url":null,"abstract":"We present two applications of Hao’s proof of the <jats:italic>Weak Bounded Negativity Conjecture</jats:italic>. First, we address the so-called <jats:italic>Weighted Bounded Negativity Conjecture</jats:italic> and we prove that all but finitely many reduced and irreducible curves <jats:italic>C</jats:italic> on the blow-up of ℙ<jats:sup>2</jats:sup> at <jats:italic>n</jats:italic> points satisfy the inequality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2023-0027_eq_001.png\"/> <jats:tex-math>$begin{array}{} displaystyle C^2 ge min bigl{-frac{1}{12} n (C.L +27), -2 bigr}, end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:italic>L</jats:italic> is the pull-back of a line. Next, we turn to the widely open conjecture that the canonical degree <jats:italic>C</jats:italic>.<jats:italic>K<jats:sub>X</jats:sub> </jats:italic> of an integral curve on a smooth projective surface <jats:italic>X</jats:italic> is bounded from above by an expression of the form <jats:italic>A</jats:italic>(<jats:italic>g</jats:italic> − 1) + <jats:italic>B</jats:italic>, where <jats:italic>g</jats:italic> is the geometric genus of <jats:italic>C</jats:italic> and <jats:italic>A</jats:italic>, <jats:italic>B</jats:italic> are constants depending only on <jats:italic>X</jats:italic>. We prove that this conjecture holds with <jats:italic>A</jats:italic> = − 1 under the assumptions <jats:italic>h</jats:italic> <jats:sup>0</jats:sup>(<jats:italic>X</jats:italic>, −<jats:italic>K<jats:sub>X</jats:sub> </jats:italic>) = 0 and <jats:italic>h</jats:italic> <jats:sup>0</jats:sup>(<jats:italic>X</jats:italic>, 2<jats:italic>K<jats:sub>X</jats:sub> </jats:italic> + <jats:italic>C</jats:italic>) = 0.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"183 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poisson Structures on moduli spaces of Higgs bundles over stacky curves 堆叠曲线上希格斯束模态空间的泊松结构
IF 0.5 4区 数学
Advances in Geometry Pub Date : 2024-08-13 DOI: 10.1515/advgeom-2024-0004
Georgios Kydonakis, Hao Sun, Lutian Zhao
{"title":"Poisson Structures on moduli spaces of Higgs bundles over stacky curves","authors":"Georgios Kydonakis, Hao Sun, Lutian Zhao","doi":"10.1515/advgeom-2024-0004","DOIUrl":"https://doi.org/10.1515/advgeom-2024-0004","url":null,"abstract":"We demonstrate the construction of Poisson structures via Lie algebroids on moduli spaces of twisted stable Higgs bundles over stacky curves. The construction provides new examples of Poisson structures on such moduli spaces. Special attention is paid to moduli spaces of parabolic Higgs bundles over a root stack.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deformation cones of Tesler polytopes 特斯勒多边形的变形锥
IF 0.5 4区 数学
Advances in Geometry Pub Date : 2024-08-13 DOI: 10.1515/advgeom-2024-0003
Yonggyu Lee, Fu Liu
{"title":"Deformation cones of Tesler polytopes","authors":"Yonggyu Lee, Fu Liu","doi":"10.1515/advgeom-2024-0003","DOIUrl":"https://doi.org/10.1515/advgeom-2024-0003","url":null,"abstract":"For <jats:italic> a </jats:italic> ∈ <jats:inline-formula> <jats:alternatives> <jats:tex-math>$begin{array}{} displaystyle mathbb{R}_{geq 0}^{n} end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Tesler polytope Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic>) is the set of upper triangular matrices with non-negative entries whose hook sum vector is <jats:italic> a </jats:italic>. We first give a different proof of the known fact that for every fixed <jats:italic> a </jats:italic> <jats:sub>0</jats:sub> ∈ <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2024-0003_eq_002.png\"/> <jats:tex-math>$begin{array}{} displaystyle mathbb{R}_{ gt 0}^{n} end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, all the Tesler polytopes Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic>) are deformations of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>). We then calculate the deformation cone of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>). In the process, we also show that any deformation of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>) is a translation of a Tesler polytope. Lastly, we consider a larger family of polytopes called flow polytopes which contains the family of Tesler polytopes and chracterize the flow polytopes which are deformations of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>).","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"6 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional-linear integrals of geodesic flows on surfaces and Nakai’s geodesic 4-webs 曲面上大地流的分数线性积分和中井大地四网
IF 0.5 4区 数学
Advances in Geometry Pub Date : 2024-08-13 DOI: 10.1515/advgeom-2024-0008
Sergey I. Agafonov, Thaís G. P. Alves
{"title":"Fractional-linear integrals of geodesic flows on surfaces and Nakai’s geodesic 4-webs","authors":"Sergey I. Agafonov, Thaís G. P. Alves","doi":"10.1515/advgeom-2024-0008","DOIUrl":"https://doi.org/10.1515/advgeom-2024-0008","url":null,"abstract":"We prove that if the geodesic flow on a surface has an integral which is fractional-linear in momenta, then the dimension of the space of such integrals is either 3 or 5, the latter case corresponding to constant gaussian curvature. We give also a geometric criterion for the existence of fractional-linear integrals: such an integral exists if and only if the surface carries a geodesic 4-web with constant cross-ratio of the four directions tangent to the web leaves.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"42 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lower bound on the translative covering density of octahedra 八面体平移覆盖密度下限
IF 0.5 4区 数学
Advances in Geometry Pub Date : 2024-08-13 DOI: 10.1515/advgeom-2024-0006
Yiming Li, Yanlu Lian, Miao Fu, Yuqin Zhang
{"title":"Lower bound on the translative covering density of octahedra","authors":"Yiming Li, Yanlu Lian, Miao Fu, Yuqin Zhang","doi":"10.1515/advgeom-2024-0006","DOIUrl":"https://doi.org/10.1515/advgeom-2024-0006","url":null,"abstract":"Based on Zong’s work [26] on translative packing densities of 3-dimensional convex bodies, we present a local method to estimate the density <jats:italic>θ<jats:sup>t</jats:sup> </jats:italic>(<jats:italic>C</jats:italic> <jats:sub>3</jats:sub>) of the densest translative covering of an octahedron. As a consequence we prove that <jats:italic>θ<jats:sup>t</jats:sup> </jats:italic>(<jats:italic>C</jats:italic> <jats:sub>3</jats:sub>) ≥ 1 + 6.6 × 10<jats:sup>–8</jats:sup>, which is the first non-trivial lower bound for this density.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"286 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the sphere and of bodies of revolution by means of Larman points 通过拉曼点确定球体和旋转体的特征
IF 0.5 4区 数学
Advances in Geometry Pub Date : 2024-08-13 DOI: 10.1515/advgeom-2024-0007
M. Angeles Alfonseca, M. Cordier, J. Jerónimo-Castro, E. Morales-Amaya
{"title":"Characterization of the sphere and of bodies of revolution by means of Larman points","authors":"M. Angeles Alfonseca, M. Cordier, J. Jerónimo-Castro, E. Morales-Amaya","doi":"10.1515/advgeom-2024-0007","DOIUrl":"https://doi.org/10.1515/advgeom-2024-0007","url":null,"abstract":"Let <jats:italic>n</jats:italic> ≥ 3 and let <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup> <jats:italic>n</jats:italic> </jats:sup> be a convex body. A point <jats:italic>p</jats:italic> ∈ int <jats:italic>K</jats:italic> is said to be a <jats:italic>Larman point</jats:italic> of <jats:italic>K</jats:italic> if for every hyperplane <jats:italic>Π</jats:italic> passing through <jats:italic>p</jats:italic>, the section <jats:italic>Π</jats:italic> ∩ <jats:italic>K</jats:italic> has an (<jats:italic>n</jats:italic> – 2)-plane of symmetry. If <jats:italic>p</jats:italic> is a Larman point of <jats:italic>K</jats:italic> and for every section <jats:italic>Π</jats:italic> ∩ <jats:italic>K</jats:italic>, <jats:italic>p</jats:italic> is in the corresponding (<jats:italic>n</jats:italic> – 2)-plane of symmetry, then we call <jats:italic>p</jats:italic> a <jats:italic>revolution</jats:italic> point of <jats:italic>K</jats:italic>. We conjecture that if <jats:italic>K</jats:italic> contains a Larman point which is not a revolution point, then <jats:italic>K</jats:italic> is either an ellipsoid or a body of revolution. This generalizes a conjecture of Bezdek for <jats:italic>n</jats:italic> = 3. We prove several results related to the conjecture for strictly convex origin symmetric bodies. Namely, if <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup> <jats:italic>n</jats:italic> </jats:sup> is a strictly convex origin symmetric body that contains a revolution point <jats:italic>p</jats:italic> which is not the origin, then <jats:italic>K</jats:italic> is a body of revolution. This generalizes the False Axis of Revolution Theorem in [7]. We also show that if <jats:italic>p</jats:italic> is a Larman point of <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup>3</jats:sup> and there exists a line <jats:italic>L</jats:italic> such that <jats:italic>p</jats:italic> ∉ <jats:italic>L</jats:italic> and, for every plane <jats:italic>Π</jats:italic> passing through <jats:italic>p</jats:italic>, the line of symmetry of the section <jats:italic>Π</jats:italic> ∩ <jats:italic>K</jats:italic> intersects <jats:italic>L</jats:italic>, then <jats:italic>K</jats:italic> is a body of revolution (in some cases, <jats:italic>K</jats:italic> is a sphere). We obtain a similar result for projections of <jats:italic>K</jats:italic>. Additionally, for <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup> <jats:italic>n</jats:italic> </jats:sup> with <jats:italic>n</jats:italic> ≥ 4, we show that if every hyperplane section or projection of <jats:italic>K</jats:italic> is a body of revolution and <jats:italic>K</jats:italic> has a unique diameter <jats:italic>D</jats:italic>, then <jats:italic>K</jats:italic> is a body of revolution with axis <jats:italic>D</jats:italic>.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"109 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Shioda–Inose structures of order 3 广义的 3 阶汐达-伊诺斯结构
IF 0.5 4区 数学
Advances in Geometry Pub Date : 2024-08-13 DOI: 10.1515/advgeom-2024-0005
Alice Garbagnati, Yulieth Prieto-Montañez
{"title":"Generalized Shioda–Inose structures of order 3","authors":"Alice Garbagnati, Yulieth Prieto-Montañez","doi":"10.1515/advgeom-2024-0005","DOIUrl":"https://doi.org/10.1515/advgeom-2024-0005","url":null,"abstract":"A Shioda–Inose structure is a geometric construction which associates to an Abelian surface a projective K3 surface in such a way that their transcendental lattices are isometric. This geometric construction was described by Morrison by considering special symplectic involutions on the K3 surfaces. After Morrison several authors provided explicit examples. The aim of this paper is to generalize Morrison’s results and some of the known examples to an analogous geometric construction involving not involutions, but order 3 automorphisms. Therefore, we define generalized Shioda–Inose structures of order 3, we identify the K3 surfaces and the Abelian surfaces which appear in these structures and we provide explicit examples.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"6 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The feet of orthogonal Buekenhout–Metz unitals Buekenhout-Metz 正交单元脚
IF 0.5 4区 数学
Advances in Geometry Pub Date : 2024-08-13 DOI: 10.1515/advgeom-2024-0001
S.G. Barwick, W.-A. Jackson, P. Wild
{"title":"The feet of orthogonal Buekenhout–Metz unitals","authors":"S.G. Barwick, W.-A. Jackson, P. Wild","doi":"10.1515/advgeom-2024-0001","DOIUrl":"https://doi.org/10.1515/advgeom-2024-0001","url":null,"abstract":"In this article we look at the geometric structure of the feet of an orthogonal Buekenhout–Metz unital 𝓤 in PG(2, <jats:italic>q</jats:italic> <jats:sup>2</jats:sup>). We show that the feet of each point form a set of type (0, 1, 2, 4). Further, we discuss the structure of any 4-secants, and determine exactly when the feet form an arc.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"286 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some observations on conformal symmetries of G 2-structures 关于 G 2 结构共形对称性的几点观察
IF 0.5 4区 数学
Advances in Geometry Pub Date : 2024-08-13 DOI: 10.1515/advgeom-2024-0009
Christopher Lin
{"title":"Some observations on conformal symmetries of G 2-structures","authors":"Christopher Lin","doi":"10.1515/advgeom-2024-0009","DOIUrl":"https://doi.org/10.1515/advgeom-2024-0009","url":null,"abstract":"On a 7-manifold with a <jats:italic>G</jats:italic> <jats:sub>2</jats:sub>-structure, we study conformal symmetries — which are vector fields whose flow generate conformal transformations of the <jats:italic>G</jats:italic> <jats:sub>2</jats:sub>-structure. In particular, we focus on compact 7-manifolds and the condition that the Lee form of the <jats:italic>G</jats:italic> <jats:sub>2</jats:sub>-structure is closed. Among other observations, we show that conformal symmetries are determined within a conformal class of the <jats:italic>G</jats:italic> <jats:sub>2</jats:sub>-structure by the symmetries of a unique (up to homothety) <jats:italic>G</jats:italic> <jats:sub>2</jats:sub>-structure whose Lee form is harmonic. On a related note, we also demonstrate that symmetries are split along fibrations when the Lee vector field is itself a symmetry.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"6 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信