{"title":"Variations on the Weak Bounded Negativity Conjecture","authors":"Ciro Ciliberto, Claudio Fontanari","doi":"10.1515/advgeom-2023-0027","DOIUrl":null,"url":null,"abstract":"We present two applications of Hao’s proof of the <jats:italic>Weak Bounded Negativity Conjecture</jats:italic>. First, we address the so-called <jats:italic>Weighted Bounded Negativity Conjecture</jats:italic> and we prove that all but finitely many reduced and irreducible curves <jats:italic>C</jats:italic> on the blow-up of ℙ<jats:sup>2</jats:sup> at <jats:italic>n</jats:italic> points satisfy the inequality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2023-0027_eq_001.png\"/> <jats:tex-math>$\\begin{array}{} \\displaystyle C^2 \\ge \\min \\bigl\\{-\\frac{1}{12} n (C.L +27), -2 \\bigr\\}, \\end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:italic>L</jats:italic> is the pull-back of a line. Next, we turn to the widely open conjecture that the canonical degree <jats:italic>C</jats:italic>.<jats:italic>K<jats:sub>X</jats:sub> </jats:italic> of an integral curve on a smooth projective surface <jats:italic>X</jats:italic> is bounded from above by an expression of the form <jats:italic>A</jats:italic>(<jats:italic>g</jats:italic> − 1) + <jats:italic>B</jats:italic>, where <jats:italic>g</jats:italic> is the geometric genus of <jats:italic>C</jats:italic> and <jats:italic>A</jats:italic>, <jats:italic>B</jats:italic> are constants depending only on <jats:italic>X</jats:italic>. We prove that this conjecture holds with <jats:italic>A</jats:italic> = − 1 under the assumptions <jats:italic>h</jats:italic> <jats:sup>0</jats:sup>(<jats:italic>X</jats:italic>, −<jats:italic>K<jats:sub>X</jats:sub> </jats:italic>) = 0 and <jats:italic>h</jats:italic> <jats:sup>0</jats:sup>(<jats:italic>X</jats:italic>, 2<jats:italic>K<jats:sub>X</jats:sub> </jats:italic> + <jats:italic>C</jats:italic>) = 0.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present two applications of Hao’s proof of the Weak Bounded Negativity Conjecture. First, we address the so-called Weighted Bounded Negativity Conjecture and we prove that all but finitely many reduced and irreducible curves C on the blow-up of ℙ2 at n points satisfy the inequality $\begin{array}{} \displaystyle C^2 \ge \min \bigl\{-\frac{1}{12} n (C.L +27), -2 \bigr\}, \end{array}$ where L is the pull-back of a line. Next, we turn to the widely open conjecture that the canonical degree C.KX of an integral curve on a smooth projective surface X is bounded from above by an expression of the form A(g − 1) + B, where g is the geometric genus of C and A, B are constants depending only on X. We prove that this conjecture holds with A = − 1 under the assumptions h0(X, −KX) = 0 and h0(X, 2KX + C) = 0.
我们介绍了郝氏对弱有界否定猜想证明的两个应用。首先,我们讨论了所谓的加权有界否定猜想,并证明了在ℙ2的炸开上,除了有限多的还原曲线和不可还原曲线C之外,所有在n个点上的还原曲线和不可还原曲线C都满足不等式 $\begin{array}{}\displaystyle C^2 \ge \min \bigl\{-\frac{1}{12} n (C.L +27), -2 \bigr\}, \end{array}$ 其中 L 是直线的回拉。接下来,我们将讨论一个广为流传的猜想,即光滑投影面 X 上积分曲线的规范度 C.KX 是由 A(g - 1) + B 形式的表达式从上而下限定的,其中 g 是 C 的几何属,A、B 是仅取决于 X 的常数。
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.