Variations on the Weak Bounded Negativity Conjecture

IF 0.5 4区 数学 Q3 MATHEMATICS
Ciro Ciliberto, Claudio Fontanari
{"title":"Variations on the Weak Bounded Negativity Conjecture","authors":"Ciro Ciliberto, Claudio Fontanari","doi":"10.1515/advgeom-2023-0027","DOIUrl":null,"url":null,"abstract":"We present two applications of Hao’s proof of the <jats:italic>Weak Bounded Negativity Conjecture</jats:italic>. First, we address the so-called <jats:italic>Weighted Bounded Negativity Conjecture</jats:italic> and we prove that all but finitely many reduced and irreducible curves <jats:italic>C</jats:italic> on the blow-up of ℙ<jats:sup>2</jats:sup> at <jats:italic>n</jats:italic> points satisfy the inequality <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2023-0027_eq_001.png\"/> <jats:tex-math>$\\begin{array}{} \\displaystyle C^2 \\ge \\min \\bigl\\{-\\frac{1}{12} n (C.L +27), -2 \\bigr\\}, \\end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:italic>L</jats:italic> is the pull-back of a line. Next, we turn to the widely open conjecture that the canonical degree <jats:italic>C</jats:italic>.<jats:italic>K<jats:sub>X</jats:sub> </jats:italic> of an integral curve on a smooth projective surface <jats:italic>X</jats:italic> is bounded from above by an expression of the form <jats:italic>A</jats:italic>(<jats:italic>g</jats:italic> − 1) + <jats:italic>B</jats:italic>, where <jats:italic>g</jats:italic> is the geometric genus of <jats:italic>C</jats:italic> and <jats:italic>A</jats:italic>, <jats:italic>B</jats:italic> are constants depending only on <jats:italic>X</jats:italic>. We prove that this conjecture holds with <jats:italic>A</jats:italic> = − 1 under the assumptions <jats:italic>h</jats:italic> <jats:sup>0</jats:sup>(<jats:italic>X</jats:italic>, −<jats:italic>K<jats:sub>X</jats:sub> </jats:italic>) = 0 and <jats:italic>h</jats:italic> <jats:sup>0</jats:sup>(<jats:italic>X</jats:italic>, 2<jats:italic>K<jats:sub>X</jats:sub> </jats:italic> + <jats:italic>C</jats:italic>) = 0.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"183 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present two applications of Hao’s proof of the Weak Bounded Negativity Conjecture. First, we address the so-called Weighted Bounded Negativity Conjecture and we prove that all but finitely many reduced and irreducible curves C on the blow-up of ℙ2 at n points satisfy the inequality $\begin{array}{} \displaystyle C^2 \ge \min \bigl\{-\frac{1}{12} n (C.L +27), -2 \bigr\}, \end{array}$ where L is the pull-back of a line. Next, we turn to the widely open conjecture that the canonical degree C.KX of an integral curve on a smooth projective surface X is bounded from above by an expression of the form A(g − 1) + B, where g is the geometric genus of C and A, B are constants depending only on X. We prove that this conjecture holds with A = − 1 under the assumptions h 0(X, −KX ) = 0 and h 0(X, 2KX + C) = 0.
弱边界否定性猜想的变体
我们介绍了郝氏对弱有界否定猜想证明的两个应用。首先,我们讨论了所谓的加权有界否定猜想,并证明了在ℙ2的炸开上,除了有限多的还原曲线和不可还原曲线C之外,所有在n个点上的还原曲线和不可还原曲线C都满足不等式 $\begin{array}{}\displaystyle C^2 \ge \min \bigl\{-\frac{1}{12} n (C.L +27), -2 \bigr\}, \end{array}$ 其中 L 是直线的回拉。接下来,我们将讨论一个广为流传的猜想,即光滑投影面 X 上积分曲线的规范度 C.KX 是由 A(g - 1) + B 形式的表达式从上而下限定的,其中 g 是 C 的几何属,A、B 是仅取决于 X 的常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信