Inequalities for f *-vectors of lattice polytopes

IF 0.5 4区 数学 Q3 MATHEMATICS
Matthias Beck, Danai Deligeorgaki, Max Hlavacek, Jerónimo Valencia-Porras
{"title":"Inequalities for f *-vectors of lattice polytopes","authors":"Matthias Beck, Danai Deligeorgaki, Max Hlavacek, Jerónimo Valencia-Porras","doi":"10.1515/advgeom-2024-0002","DOIUrl":null,"url":null,"abstract":"The Ehrhart polynomial ehr<jats:sub> <jats:italic>P</jats:italic> </jats:sub>(<jats:italic>n</jats:italic>) of a lattice polytope <jats:italic>P</jats:italic> counts the number of integer points in the <jats:italic>n</jats:italic>-th dilate of <jats:italic>P</jats:italic>. The <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vector of <jats:italic>P</jats:italic>, introduced by Felix Breuer in 2012, is the vector of coefficients of ehr<jats:sub> <jats:italic>P</jats:italic> </jats:sub>(<jats:italic>n</jats:italic>) with respect to the binomial coefficient basis <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2024-0002_eq_001.png\"/> <jats:tex-math>$\\begin{array}{} \\bigl\\{\\binom{n-1}{0},\\binom{n-1}{1},\\dots,\\binom{n-1}{d}\\bigr\\}, \\end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:italic>d</jats:italic> = dim <jats:italic>P</jats:italic>. Similarly to <jats:italic>h/h</jats:italic> <jats:sup>*</jats:sup>-vectors, the <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vector of <jats:italic>P</jats:italic> coincides with the <jats:italic>f</jats:italic>-vector of its unimodular triangulations (if they exist). We present several inequalities that hold among the coefficients of <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vectors of lattice polytopes. These inequalities resemble striking similarities with existing inequalities for the coefficients of <jats:italic>f</jats:italic>-vectors of simplicial polytopes; e.g., the first half of the <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-coefficients increases and the last quarter decreases. Even though <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vectors of polytopes are not always unimodal, there are several families of polytopes that carry the unimodality property. We also show that for any polytope with a given Ehrhart <jats:italic>h</jats:italic> <jats:sup>*</jats:sup>-vector, there is a polytope with the same <jats:italic>h</jats:italic> <jats:sup>*</jats:sup>-vector whose <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vector is unimodal.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2024-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Ehrhart polynomial ehr P (n) of a lattice polytope P counts the number of integer points in the n-th dilate of P. The f *-vector of P, introduced by Felix Breuer in 2012, is the vector of coefficients of ehr P (n) with respect to the binomial coefficient basis $\begin{array}{} \bigl\{\binom{n-1}{0},\binom{n-1}{1},\dots,\binom{n-1}{d}\bigr\}, \end{array}$ where d = dim P. Similarly to h/h *-vectors, the f *-vector of P coincides with the f-vector of its unimodular triangulations (if they exist). We present several inequalities that hold among the coefficients of f *-vectors of lattice polytopes. These inequalities resemble striking similarities with existing inequalities for the coefficients of f-vectors of simplicial polytopes; e.g., the first half of the f *-coefficients increases and the last quarter decreases. Even though f *-vectors of polytopes are not always unimodal, there are several families of polytopes that carry the unimodality property. We also show that for any polytope with a given Ehrhart h *-vector, there is a polytope with the same h *-vector whose f *-vector is unimodal.
格状多面体 f * 向量的不等式
由 Felix Breuer 于 2012 年提出的 P 的 f * 向量是 ehr P (n) 关于二项式系数基础 $\begin{array}{} 的系数向量。\与 h/h *-向量类似,P 的 f *-向量与其单模态三角剖分(如果存在的话)的 f -向量重合。我们提出了格状多面体的 f *-向量系数之间的几个不等式。这些不等式与简单多面体 f *-向量系数的现有不等式有惊人的相似之处;例如,f *-系数的前半部分会增加,而后四分之一会减少。尽管多面体的 f *-vectors 并不总是单峰的,但有几个多面体族具有单峰特性。我们还证明,对于任何具有给定艾尔哈特 h *向量的多面体,都有一个具有相同 h *向量的多面体,其 f *向量是单峰的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信