Matthias Beck, Danai Deligeorgaki, Max Hlavacek, Jerónimo Valencia-Porras
{"title":"Inequalities for f *-vectors of lattice polytopes","authors":"Matthias Beck, Danai Deligeorgaki, Max Hlavacek, Jerónimo Valencia-Porras","doi":"10.1515/advgeom-2024-0002","DOIUrl":null,"url":null,"abstract":"The Ehrhart polynomial ehr<jats:sub> <jats:italic>P</jats:italic> </jats:sub>(<jats:italic>n</jats:italic>) of a lattice polytope <jats:italic>P</jats:italic> counts the number of integer points in the <jats:italic>n</jats:italic>-th dilate of <jats:italic>P</jats:italic>. The <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vector of <jats:italic>P</jats:italic>, introduced by Felix Breuer in 2012, is the vector of coefficients of ehr<jats:sub> <jats:italic>P</jats:italic> </jats:sub>(<jats:italic>n</jats:italic>) with respect to the binomial coefficient basis <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2024-0002_eq_001.png\"/> <jats:tex-math>$\\begin{array}{} \\bigl\\{\\binom{n-1}{0},\\binom{n-1}{1},\\dots,\\binom{n-1}{d}\\bigr\\}, \\end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:italic>d</jats:italic> = dim <jats:italic>P</jats:italic>. Similarly to <jats:italic>h/h</jats:italic> <jats:sup>*</jats:sup>-vectors, the <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vector of <jats:italic>P</jats:italic> coincides with the <jats:italic>f</jats:italic>-vector of its unimodular triangulations (if they exist). We present several inequalities that hold among the coefficients of <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vectors of lattice polytopes. These inequalities resemble striking similarities with existing inequalities for the coefficients of <jats:italic>f</jats:italic>-vectors of simplicial polytopes; e.g., the first half of the <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-coefficients increases and the last quarter decreases. Even though <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vectors of polytopes are not always unimodal, there are several families of polytopes that carry the unimodality property. We also show that for any polytope with a given Ehrhart <jats:italic>h</jats:italic> <jats:sup>*</jats:sup>-vector, there is a polytope with the same <jats:italic>h</jats:italic> <jats:sup>*</jats:sup>-vector whose <jats:italic>f</jats:italic> <jats:sup>*</jats:sup>-vector is unimodal.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2024-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Ehrhart polynomial ehrP(n) of a lattice polytope P counts the number of integer points in the n-th dilate of P. The f*-vector of P, introduced by Felix Breuer in 2012, is the vector of coefficients of ehrP(n) with respect to the binomial coefficient basis $\begin{array}{} \bigl\{\binom{n-1}{0},\binom{n-1}{1},\dots,\binom{n-1}{d}\bigr\}, \end{array}$ where d = dim P. Similarly to h/h*-vectors, the f*-vector of P coincides with the f-vector of its unimodular triangulations (if they exist). We present several inequalities that hold among the coefficients of f*-vectors of lattice polytopes. These inequalities resemble striking similarities with existing inequalities for the coefficients of f-vectors of simplicial polytopes; e.g., the first half of the f*-coefficients increases and the last quarter decreases. Even though f*-vectors of polytopes are not always unimodal, there are several families of polytopes that carry the unimodality property. We also show that for any polytope with a given Ehrhart h*-vector, there is a polytope with the same h*-vector whose f*-vector is unimodal.
由 Felix Breuer 于 2012 年提出的 P 的 f * 向量是 ehr P (n) 关于二项式系数基础 $\begin{array}{} 的系数向量。\与 h/h *-向量类似,P 的 f *-向量与其单模态三角剖分(如果存在的话)的 f -向量重合。我们提出了格状多面体的 f *-向量系数之间的几个不等式。这些不等式与简单多面体 f *-向量系数的现有不等式有惊人的相似之处;例如,f *-系数的前半部分会增加,而后四分之一会减少。尽管多面体的 f *-vectors 并不总是单峰的,但有几个多面体族具有单峰特性。我们还证明,对于任何具有给定艾尔哈特 h *向量的多面体,都有一个具有相同 h *向量的多面体,其 f *向量是单峰的。
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.