Buekenhout-Metz 正交单元脚

IF 0.5 4区 数学 Q3 MATHEMATICS
S.G. Barwick, W.-A. Jackson, P. Wild
{"title":"Buekenhout-Metz 正交单元脚","authors":"S.G. Barwick, W.-A. Jackson, P. Wild","doi":"10.1515/advgeom-2024-0001","DOIUrl":null,"url":null,"abstract":"In this article we look at the geometric structure of the feet of an orthogonal Buekenhout–Metz unital 𝓤 in PG(2, <jats:italic>q</jats:italic> <jats:sup>2</jats:sup>). We show that the feet of each point form a set of type (0, 1, 2, 4). Further, we discuss the structure of any 4-secants, and determine exactly when the feet form an arc.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"286 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The feet of orthogonal Buekenhout–Metz unitals\",\"authors\":\"S.G. Barwick, W.-A. Jackson, P. Wild\",\"doi\":\"10.1515/advgeom-2024-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we look at the geometric structure of the feet of an orthogonal Buekenhout–Metz unital 𝓤 in PG(2, <jats:italic>q</jats:italic> <jats:sup>2</jats:sup>). We show that the feet of each point form a set of type (0, 1, 2, 4). Further, we discuss the structure of any 4-secants, and determine exactly when the feet form an arc.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"286 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2024-0001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2024-0001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了 PG(2, q 2) 中正交布肯豪特-梅兹单元𝓤 脚的几何结构。我们证明,每个点的脚都构成一个类型为 (0, 1, 2, 4) 的集合。此外,我们还讨论了任何 4-secants 的结构,并准确地确定了脚何时形成弧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The feet of orthogonal Buekenhout–Metz unitals
In this article we look at the geometric structure of the feet of an orthogonal Buekenhout–Metz unital 𝓤 in PG(2, q 2). We show that the feet of each point form a set of type (0, 1, 2, 4). Further, we discuss the structure of any 4-secants, and determine exactly when the feet form an arc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信