{"title":"Deformation cones of Tesler polytopes","authors":"Yonggyu Lee, Fu Liu","doi":"10.1515/advgeom-2024-0003","DOIUrl":null,"url":null,"abstract":"For <jats:italic> a </jats:italic> ∈ <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\begin{array}{} \\displaystyle \\mathbb{R}_{\\geq 0}^{n} \\end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Tesler polytope Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic>) is the set of upper triangular matrices with non-negative entries whose hook sum vector is <jats:italic> a </jats:italic>. We first give a different proof of the known fact that for every fixed <jats:italic> a </jats:italic> <jats:sub>0</jats:sub> ∈ <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2024-0003_eq_002.png\"/> <jats:tex-math>$\\begin{array}{} \\displaystyle \\mathbb{R}_{ \\gt 0}^{n} \\end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, all the Tesler polytopes Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic>) are deformations of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>). We then calculate the deformation cone of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>). In the process, we also show that any deformation of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>) is a translation of a Tesler polytope. Lastly, we consider a larger family of polytopes called flow polytopes which contains the family of Tesler polytopes and chracterize the flow polytopes which are deformations of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>).","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"6 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2024-0003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a ∈ $\begin{array}{} \displaystyle \mathbb{R}_{\geq 0}^{n} \end{array}$, the Tesler polytope Tesn( a ) is the set of upper triangular matrices with non-negative entries whose hook sum vector is a . We first give a different proof of the known fact that for every fixed a 0 ∈ $\begin{array}{} \displaystyle \mathbb{R}_{ \gt 0}^{n} \end{array}$, all the Tesler polytopes Tesn( a ) are deformations of Tesn( a 0). We then calculate the deformation cone of Tesn( a 0). In the process, we also show that any deformation of Tesn( a 0) is a translation of a Tesler polytope. Lastly, we consider a larger family of polytopes called flow polytopes which contains the family of Tesler polytopes and chracterize the flow polytopes which are deformations of Tesn( a 0).
For a ∈ $\begin{array}{}\displaystyle \mathbb{R}_{\geq 0}^{n}\end{array}$ ,Tesler 多面体 Tes n ( a ) 是具有非负条目的上三角矩阵的集合,其钩和向量是 a 。 我们首先给出一个不同的证明,即对于每一个固定的 a 0 ∈ $\begin{array}{} 的已知事实。\displaystyle \mathbb{R}_{ \gt 0}^{n}\end{array}$ ,所有的 Tesler 多面体 Tes n ( a ) 都是 Tes n ( a 0) 的变形。然后我们计算 Tes n ( a 0) 的变形锥。在此过程中,我们还证明了 Tes n ( a 0) 的任何变形都是 Tesler 多面体的平移。最后,我们考虑了一个更大的多面体族,称为流多面体,它包含了 Tesler 多面体族,并对作为 Tes n ( a 0) 变形的流多面体进行了分析。
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.