特斯勒多边形的变形锥

IF 0.5 4区 数学 Q3 MATHEMATICS
Yonggyu Lee, Fu Liu
{"title":"特斯勒多边形的变形锥","authors":"Yonggyu Lee, Fu Liu","doi":"10.1515/advgeom-2024-0003","DOIUrl":null,"url":null,"abstract":"For <jats:italic> a </jats:italic> ∈ <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\begin{array}{} \\displaystyle \\mathbb{R}_{\\geq 0}^{n} \\end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Tesler polytope Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic>) is the set of upper triangular matrices with non-negative entries whose hook sum vector is <jats:italic> a </jats:italic>. We first give a different proof of the known fact that for every fixed <jats:italic> a </jats:italic> <jats:sub>0</jats:sub> ∈ <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2024-0003_eq_002.png\"/> <jats:tex-math>$\\begin{array}{} \\displaystyle \\mathbb{R}_{ \\gt 0}^{n} \\end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, all the Tesler polytopes Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic>) are deformations of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>). We then calculate the deformation cone of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>). In the process, we also show that any deformation of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>) is a translation of a Tesler polytope. Lastly, we consider a larger family of polytopes called flow polytopes which contains the family of Tesler polytopes and chracterize the flow polytopes which are deformations of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>).","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"6 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation cones of Tesler polytopes\",\"authors\":\"Yonggyu Lee, Fu Liu\",\"doi\":\"10.1515/advgeom-2024-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For <jats:italic> a </jats:italic> ∈ <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\begin{array}{} \\\\displaystyle \\\\mathbb{R}_{\\\\geq 0}^{n} \\\\end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Tesler polytope Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic>) is the set of upper triangular matrices with non-negative entries whose hook sum vector is <jats:italic> a </jats:italic>. We first give a different proof of the known fact that for every fixed <jats:italic> a </jats:italic> <jats:sub>0</jats:sub> ∈ <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_advgeom-2024-0003_eq_002.png\\\"/> <jats:tex-math>$\\\\begin{array}{} \\\\displaystyle \\\\mathbb{R}_{ \\\\gt 0}^{n} \\\\end{array}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, all the Tesler polytopes Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic>) are deformations of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>). We then calculate the deformation cone of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>). In the process, we also show that any deformation of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>) is a translation of a Tesler polytope. Lastly, we consider a larger family of polytopes called flow polytopes which contains the family of Tesler polytopes and chracterize the flow polytopes which are deformations of Tes<jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic> a </jats:italic> <jats:sub>0</jats:sub>).\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2024-0003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2024-0003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

For a ∈ $\begin{array}{}\displaystyle \mathbb{R}_{\geq 0}^{n}\end{array}$ ,Tesler 多面体 Tes n ( a ) 是具有非负条目的上三角矩阵的集合,其钩和向量是 a 。 我们首先给出一个不同的证明,即对于每一个固定的 a 0 ∈ $\begin{array}{} 的已知事实。\displaystyle \mathbb{R}_{ \gt 0}^{n}\end{array}$ ,所有的 Tesler 多面体 Tes n ( a ) 都是 Tes n ( a 0) 的变形。然后我们计算 Tes n ( a 0) 的变形锥。在此过程中,我们还证明了 Tes n ( a 0) 的任何变形都是 Tesler 多面体的平移。最后,我们考虑了一个更大的多面体族,称为流多面体,它包含了 Tesler 多面体族,并对作为 Tes n ( a 0) 变形的流多面体进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation cones of Tesler polytopes
For a $\begin{array}{} \displaystyle \mathbb{R}_{\geq 0}^{n} \end{array}$ , the Tesler polytope Tes n ( a ) is the set of upper triangular matrices with non-negative entries whose hook sum vector is a . We first give a different proof of the known fact that for every fixed a 0 $\begin{array}{} \displaystyle \mathbb{R}_{ \gt 0}^{n} \end{array}$ , all the Tesler polytopes Tes n ( a ) are deformations of Tes n ( a 0). We then calculate the deformation cone of Tes n ( a 0). In the process, we also show that any deformation of Tes n ( a 0) is a translation of a Tesler polytope. Lastly, we consider a larger family of polytopes called flow polytopes which contains the family of Tesler polytopes and chracterize the flow polytopes which are deformations of Tes n ( a 0).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信