M. Angeles Alfonseca, M. Cordier, J. Jerónimo-Castro, E. Morales-Amaya
{"title":"通过拉曼点确定球体和旋转体的特征","authors":"M. Angeles Alfonseca, M. Cordier, J. Jerónimo-Castro, E. Morales-Amaya","doi":"10.1515/advgeom-2024-0007","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>n</jats:italic> ≥ 3 and let <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup> <jats:italic>n</jats:italic> </jats:sup> be a convex body. A point <jats:italic>p</jats:italic> ∈ int <jats:italic>K</jats:italic> is said to be a <jats:italic>Larman point</jats:italic> of <jats:italic>K</jats:italic> if for every hyperplane <jats:italic>Π</jats:italic> passing through <jats:italic>p</jats:italic>, the section <jats:italic>Π</jats:italic> ∩ <jats:italic>K</jats:italic> has an (<jats:italic>n</jats:italic> – 2)-plane of symmetry. If <jats:italic>p</jats:italic> is a Larman point of <jats:italic>K</jats:italic> and for every section <jats:italic>Π</jats:italic> ∩ <jats:italic>K</jats:italic>, <jats:italic>p</jats:italic> is in the corresponding (<jats:italic>n</jats:italic> – 2)-plane of symmetry, then we call <jats:italic>p</jats:italic> a <jats:italic>revolution</jats:italic> point of <jats:italic>K</jats:italic>. We conjecture that if <jats:italic>K</jats:italic> contains a Larman point which is not a revolution point, then <jats:italic>K</jats:italic> is either an ellipsoid or a body of revolution. This generalizes a conjecture of Bezdek for <jats:italic>n</jats:italic> = 3. We prove several results related to the conjecture for strictly convex origin symmetric bodies. Namely, if <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup> <jats:italic>n</jats:italic> </jats:sup> is a strictly convex origin symmetric body that contains a revolution point <jats:italic>p</jats:italic> which is not the origin, then <jats:italic>K</jats:italic> is a body of revolution. This generalizes the False Axis of Revolution Theorem in [7]. We also show that if <jats:italic>p</jats:italic> is a Larman point of <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup>3</jats:sup> and there exists a line <jats:italic>L</jats:italic> such that <jats:italic>p</jats:italic> ∉ <jats:italic>L</jats:italic> and, for every plane <jats:italic>Π</jats:italic> passing through <jats:italic>p</jats:italic>, the line of symmetry of the section <jats:italic>Π</jats:italic> ∩ <jats:italic>K</jats:italic> intersects <jats:italic>L</jats:italic>, then <jats:italic>K</jats:italic> is a body of revolution (in some cases, <jats:italic>K</jats:italic> is a sphere). We obtain a similar result for projections of <jats:italic>K</jats:italic>. Additionally, for <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup> <jats:italic>n</jats:italic> </jats:sup> with <jats:italic>n</jats:italic> ≥ 4, we show that if every hyperplane section or projection of <jats:italic>K</jats:italic> is a body of revolution and <jats:italic>K</jats:italic> has a unique diameter <jats:italic>D</jats:italic>, then <jats:italic>K</jats:italic> is a body of revolution with axis <jats:italic>D</jats:italic>.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"109 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the sphere and of bodies of revolution by means of Larman points\",\"authors\":\"M. Angeles Alfonseca, M. Cordier, J. Jerónimo-Castro, E. Morales-Amaya\",\"doi\":\"10.1515/advgeom-2024-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>n</jats:italic> ≥ 3 and let <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup> <jats:italic>n</jats:italic> </jats:sup> be a convex body. A point <jats:italic>p</jats:italic> ∈ int <jats:italic>K</jats:italic> is said to be a <jats:italic>Larman point</jats:italic> of <jats:italic>K</jats:italic> if for every hyperplane <jats:italic>Π</jats:italic> passing through <jats:italic>p</jats:italic>, the section <jats:italic>Π</jats:italic> ∩ <jats:italic>K</jats:italic> has an (<jats:italic>n</jats:italic> – 2)-plane of symmetry. If <jats:italic>p</jats:italic> is a Larman point of <jats:italic>K</jats:italic> and for every section <jats:italic>Π</jats:italic> ∩ <jats:italic>K</jats:italic>, <jats:italic>p</jats:italic> is in the corresponding (<jats:italic>n</jats:italic> – 2)-plane of symmetry, then we call <jats:italic>p</jats:italic> a <jats:italic>revolution</jats:italic> point of <jats:italic>K</jats:italic>. We conjecture that if <jats:italic>K</jats:italic> contains a Larman point which is not a revolution point, then <jats:italic>K</jats:italic> is either an ellipsoid or a body of revolution. This generalizes a conjecture of Bezdek for <jats:italic>n</jats:italic> = 3. We prove several results related to the conjecture for strictly convex origin symmetric bodies. Namely, if <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup> <jats:italic>n</jats:italic> </jats:sup> is a strictly convex origin symmetric body that contains a revolution point <jats:italic>p</jats:italic> which is not the origin, then <jats:italic>K</jats:italic> is a body of revolution. This generalizes the False Axis of Revolution Theorem in [7]. We also show that if <jats:italic>p</jats:italic> is a Larman point of <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup>3</jats:sup> and there exists a line <jats:italic>L</jats:italic> such that <jats:italic>p</jats:italic> ∉ <jats:italic>L</jats:italic> and, for every plane <jats:italic>Π</jats:italic> passing through <jats:italic>p</jats:italic>, the line of symmetry of the section <jats:italic>Π</jats:italic> ∩ <jats:italic>K</jats:italic> intersects <jats:italic>L</jats:italic>, then <jats:italic>K</jats:italic> is a body of revolution (in some cases, <jats:italic>K</jats:italic> is a sphere). We obtain a similar result for projections of <jats:italic>K</jats:italic>. Additionally, for <jats:italic>K</jats:italic> ⊂ ℝ<jats:sup> <jats:italic>n</jats:italic> </jats:sup> with <jats:italic>n</jats:italic> ≥ 4, we show that if every hyperplane section or projection of <jats:italic>K</jats:italic> is a body of revolution and <jats:italic>K</jats:italic> has a unique diameter <jats:italic>D</jats:italic>, then <jats:italic>K</jats:italic> is a body of revolution with axis <jats:italic>D</jats:italic>.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2024-0007\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2024-0007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 n ≥ 3,且 K ⊂ ℝ n 是一个凸体。如果经过 p 的每一个超平面 Π 的截面 Π ∩ K 都有一个 (n - 2) 对称面,则称点 p∈ int K 为 K 的拉曼点。如果 p 是 K 的一个拉曼点,并且对于每一段 Π ∩ K,p 都在相应的(n - 2)对称面上,那么我们称 p 为 K 的一个旋转点。我们猜想,如果 K 包含一个不是旋转点的拉曼点,那么 K 要么是一个椭圆体,要么是一个旋转体。这概括了贝兹德克对 n = 3 的猜想。我们证明了与严格凸原点对称体猜想相关的几个结果。也就是说,如果 K ⊂ ℝ n 是一个严格凸原点对称体,其中包含一个非原点的旋转点 p,那么 K 是一个旋转体。这概括了 [7] 中的假旋转轴定理。我们还证明,如果 p 是 K ⊂ ℝ3 的一个拉曼点,并且存在一条直线 L,使得 p ∉ L,并且对于经过 p 的每一个平面 Π,截面 Π ∩ K 的对称线都与 L 相交,那么 K 是一个旋转体(在某些情况下,K 是一个球体)。此外,对于 K ⊂ ℝ n(n≥4),我们证明了如果 K 的每个超平面截面或投影都是一个旋转体,并且 K 有唯一的直径 D,那么 K 是一个以 D 为轴的旋转体。
Characterization of the sphere and of bodies of revolution by means of Larman points
Let n ≥ 3 and let K ⊂ ℝn be a convex body. A point p ∈ int K is said to be a Larman point of K if for every hyperplane Π passing through p, the section Π ∩ K has an (n – 2)-plane of symmetry. If p is a Larman point of K and for every section Π ∩ K, p is in the corresponding (n – 2)-plane of symmetry, then we call p a revolution point of K. We conjecture that if K contains a Larman point which is not a revolution point, then K is either an ellipsoid or a body of revolution. This generalizes a conjecture of Bezdek for n = 3. We prove several results related to the conjecture for strictly convex origin symmetric bodies. Namely, if K ⊂ ℝn is a strictly convex origin symmetric body that contains a revolution point p which is not the origin, then K is a body of revolution. This generalizes the False Axis of Revolution Theorem in [7]. We also show that if p is a Larman point of K ⊂ ℝ3 and there exists a line L such that p ∉ L and, for every plane Π passing through p, the line of symmetry of the section Π ∩ K intersects L, then K is a body of revolution (in some cases, K is a sphere). We obtain a similar result for projections of K. Additionally, for K ⊂ ℝn with n ≥ 4, we show that if every hyperplane section or projection of K is a body of revolution and K has a unique diameter D, then K is a body of revolution with axis D.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.