Energy advances最新文献

筛选
英文 中文
Optical constants manipulation of formamidinium lead iodide perovskites: ellipsometric and spectroscopic twigging. 操纵甲脒碘化铅包晶石的光学常数:椭偏和光谱分析。
IF 3.2
Energy advances Pub Date : 2024-08-26 DOI: 10.1039/d4ya00339j
Mohd Taukeer Khan, Muhammed P U Haris, Baraa Alhouri, Samrana Kazim, Shahzada Ahmad
{"title":"Optical constants manipulation of formamidinium lead iodide perovskites: ellipsometric and spectroscopic twigging.","authors":"Mohd Taukeer Khan, Muhammed P U Haris, Baraa Alhouri, Samrana Kazim, Shahzada Ahmad","doi":"10.1039/d4ya00339j","DOIUrl":"10.1039/d4ya00339j","url":null,"abstract":"<p><p>Unraveling the knowledge of the complex refractive index and photophysical properties of the perovskite layer is paramount to uncovering the physical process that occurs in a perovskite solar cell under illumination. Herein, we probed the optical and photophysical properties of FAPbI<sub>3</sub> (FAPI) and Cs<sub>0.1</sub>FA<sub>0.9</sub>PbI<sub>3</sub> (CsFAPI) thin films deposited from pre-synthesized powder, by the spectroscopic ellipsometer and time-resolved fluorescence spectra. We determined the complex refractive index of perovskite films by fitting the measured spectroscopic ellipsometer data with the three-oscillator Tauc-Lorentz (T-L) model. We deduced that the CsFAPI thin film had a slightly lower absorption coefficient than the FAPI, but a higher refractive index and dielectric constant than the FAPI. The peak photoluminescence (PL) emission of FAPI and CsFAPI thin film on glass substrates was observed around 803 nm and 799 nm, respectively, while on ITO substrates, both FAPI and CsFAPI thin film was quenched and red-shifted to 816 nm. The methylammonium free pure CsFAPI-based perovskite solar cell fabricated in p-i-n configuration, measured a competitive efficiency of 16.14%, characterized by a <i>J</i> <sub>SC</sub> of 23.995 mA cm<sup>-2</sup>, <i>V</i> <sub>OC</sub> of 912 mV, and FF of 73.74%.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly conductive flat grains of cesium lead bromide perovskites via additive engineering with methylammonium bromide 通过溴化甲基铵添加工程获得高导电性扁平溴化铯铅包晶石晶粒
Energy advances Pub Date : 2024-08-26 DOI: 10.1039/d4ya00487f
Chandra Shakher Pathak, Deepak Aloysius, Satyajit Gupta, Sabyasachi Mukhopadhyay, Eran Edri
{"title":"Highly conductive flat grains of cesium lead bromide perovskites via additive engineering with methylammonium bromide","authors":"Chandra Shakher Pathak, Deepak Aloysius, Satyajit Gupta, Sabyasachi Mukhopadhyay, Eran Edri","doi":"10.1039/d4ya00487f","DOIUrl":"https://doi.org/10.1039/d4ya00487f","url":null,"abstract":"Perovskite solar cells made of inorganic cesium lead bromide (CsPbBr<small><sub>3</sub></small>) display unusually high open-circuit potentials. Yet, their photovoltaic efficiency is still lagging behind that of iodide-based halide perovskites. In this study, a multistep solution spin coating process is used to create a CsPbBr<small><sub>3</sub></small> film. The CsPbBr<small><sub>3</sub></small> perovskite film consists of flat and rounded grains, and the photocurrent of each grain type is imbalanced. Interestingly, a significant current increase in flat grains is observed when conducting atomic force microscopy (c-AFM) at the nanoscale after the addition of methyl ammonium bromide (MABr) as an additive. The addition of MABr results in good optoelectronic quality of perovskite films with highly conductive grains and enables better charge transport and hence improved power conversion efficiency.","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective kinetic control of interfacial charge transfer reactions in Si-composite anodes for Li-ion batteries† 锂离子电池硅复合材料阳极中界面电荷转移反应的选择性动力学控制†。
IF 3.2
Energy advances Pub Date : 2024-08-23 DOI: 10.1039/D4YA00418C
Emma A. Cave, Tyson A. Carr and Cody W. Schlenker
{"title":"Selective kinetic control of interfacial charge transfer reactions in Si-composite anodes for Li-ion batteries†","authors":"Emma A. Cave, Tyson A. Carr and Cody W. Schlenker","doi":"10.1039/D4YA00418C","DOIUrl":"https://doi.org/10.1039/D4YA00418C","url":null,"abstract":"<p >In this report, we demonstrate a strategy to selectively suppress reactions at unpassivated active material surfaces in silicon composite electrodes, mitigating the capacity-draining effects of continual electrolyte reduction in alloying-type anodes for lithium-ion batteries. Inspired by dipolar modification of electrodes for photovoltaic applications, we introduced conformationally-labile permanent dipoles at the electrochemical electrode interface to dynamically modulate charge transfer kinetics across the interface. Polyacrylic acid (PAA) binder modified with the dipole-bearing molecule 3-cyanopropyltriethoxysilane displays a 17% increase in capacity retention <em>versus</em> unmodified PAA binder. Differential capacity analysis shows a marked cathodic shift of ∼150 mV in overpotential in the pre-alloying voltage range following the initial solid electrolyte interphase (SEI) formation step. At the same time, we observe negligible shift in overpotential for reversible lithium-ion storage, consistent with selective modulation of irreversible reaction kinetics. Electrochemical impedance spectroscopy indicates that this modification results in a thinner SEI layer. Despite the improved performance, the charge transfer resistance of the half-cell is higher with the modification, suggesting some opportunity for improving the strategy. Time-resolved spectroelectrochemical analysis of desolvation kinetics in modified binders indicates that the modified binder has slower and less selective ion transport. We conclude that future iterations of this strategy which avoid disrupting the beneficial ionic transport properties of the binder would result in even greater performance enhancement. We propose that this may be accomplished by incorporating oligomeric dipolar modifiers, either in the binder or at the active material itself. Either way would increase the ratio of dipoles to PAA linking sites, thus avoiding the competing deleterious impacts on device performance.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00418c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cradle-to-gate life cycle assessment of green methanol production using direct air capture† 利用直接空气捕集技术进行绿色甲醇生产的 "从摇篮到终点 "生命周期评估†。
IF 3.2
Energy advances Pub Date : 2024-08-20 DOI: 10.1039/D4YA00316K
Nicholas Badger, Rahim Boylu, Valentine Ilojianya, Mustafa Erguvan and Shahriar Amini
{"title":"A cradle-to-gate life cycle assessment of green methanol production using direct air capture†","authors":"Nicholas Badger, Rahim Boylu, Valentine Ilojianya, Mustafa Erguvan and Shahriar Amini","doi":"10.1039/D4YA00316K","DOIUrl":"https://doi.org/10.1039/D4YA00316K","url":null,"abstract":"<p >This study presents a comprehensive cradle-to-gate life cycle assessment (LCA) of synthetic methanol production, integrating low-temperature solid sorbent direct air capture (DAC) systems with renewable energy sources and green hydrogen to evaluate the environmental impacts of various renewable energy configurations for powering the DAC-to-methanol synthesis processes. Renewable energy-powered configurations result in significantly lower greenhouse gas (GHG) emissions than traditional methanol production methods and DAC systems powered by conventional grid energy. Energy configurations analyzed are current US grid mix, solar photovoltaic (PV) in Alabama and Arizona, USA, onshore wind, run-of-river hydroelectric, and geothermal. Notably, hydroelectric and wind power in the western United States emerge as the most sustainable options, showing the lowest global warming potential (GWP) impacts at −2.53 and −2.39 kg CO<small><sub>2</sub></small> eq. per kg methanol produced, respectively, in contrast to the +0.944 kg CO<small><sub>2</sub></small> eq. from traditional steam methane reforming. Furthermore, this research investigates the use of various heat sources for regenerating low-temperature solid sorbent DAC, emphasizing the potential integration of new experimental results of novel microwave-based regeneration compared to industrial waste heat. Through the analysis of renewable energy scenarios and DAC regeneration heat sources, the research emphasizes the pivotal role of sustainable energy sources in climate change mitigation. This study introduces a new approach by comparing both various renewable energy sources and DAC heat sources to identify the most optimal configurations. This work is also distinguished by its integration of new experimental data on microwave DAC regeneration, offering a unique contribution to the existing body of knowledge. This LCA scrutinizes the environmental impacts of renewably powered DAC-to-methanol systems and compares them with traditional methanol production methods, revealing the significant potential for carbon neutrality. The findings highlight the importance of strategic technology and energy source optimization to minimize environmental impacts, thus guiding the scaling up of DAC and renewable energy technologies for effective climate mitigation. By recognizing the environmental advantages of integrating renewable energy sources with DAC-to-methanol technologies, this research marks a significant step forward in advancing DAC technology and pushes the boundaries of green methanol production toward true sustainability.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00316k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the impact of remote oxygen plasma treatment on the surface chemistry and electrochemical properties of graphite felt electrodes for redox flow batteries 分析远程氧等离子处理对氧化还原液流电池石墨毡电极表面化学和电化学特性的影响
Energy advances Pub Date : 2024-08-19 DOI: 10.1039/d4ya00383g
L. Mauricio Murillo-Herrera, Carlos J. Mingoes, J. Obrero-Pérez, Juan R. Sánchez-Valencia, Michael W. Thielke, Ángel Barranco, Ana B. Jorge Sobrido
{"title":"Analysis of the impact of remote oxygen plasma treatment on the surface chemistry and electrochemical properties of graphite felt electrodes for redox flow batteries","authors":"L. Mauricio Murillo-Herrera, Carlos J. Mingoes, J. Obrero-Pérez, Juan R. Sánchez-Valencia, Michael W. Thielke, Ángel Barranco, Ana B. Jorge Sobrido","doi":"10.1039/d4ya00383g","DOIUrl":"https://doi.org/10.1039/d4ya00383g","url":null,"abstract":"The effects of a remote oxygen plasma (ROP) treatment on the surface of commercial graphite felts were investigated and compared against a conventional thermal treatment. In contrast to methodologies where the sample is directly exposed to the plasma, ROP allows for a high control of sample–plasma interaction, thereby avoiding extensive etching processes on the fibre surface. To assess the impact of ROP treatment time, the electrodes were subjected to three different periods (10, 60, and 600 seconds). X-ray photoelectron spectroscopy showed that the ROP treatment introduced nearly three times more surface oxygen functionalities than the thermal treatment. Raman spectroscopy measurements revealed a significant increase in amorphous carbon domains for the ROP samples. The thermal treatment favoured increases in graphitic defects and resulted in an order of magnitude larger ECSA compared to the ROP treated materials despite having lower content in oxygen functionalities. The electrochemical analysis showed enhanced charge-transfer overpotentials for GF400. The ROP samples exhibited a lower mass-transport overpotential than the thermally treated material and had similar permeabilities, which overall translated to the thermal treatment offering better performance at fast flow rates. However, at slow flow rates (∼10 mL min<small><sup>−1</sup></small>), the ROP treatment for the shortest period offered comparable performance to conventional thermal treatment.","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility study of UV intensity monitoring in water disinfection systems using reverse-biased LED photometers† 使用反向偏置 LED 光度计监测水消毒系统中紫外线强度的可行性研究†。
IF 3.2
Energy advances Pub Date : 2024-08-19 DOI: 10.1039/D3YA00554B
D. Pousty, Y. Gerchman and H. Mamane
{"title":"Feasibility study of UV intensity monitoring in water disinfection systems using reverse-biased LED photometers†","authors":"D. Pousty, Y. Gerchman and H. Mamane","doi":"10.1039/D3YA00554B","DOIUrl":"https://doi.org/10.1039/D3YA00554B","url":null,"abstract":"<p >Common ultraviolet (UV) photodiodes or detectors for measuring the intensity of UV-light-emitting diodes (LEDs) in UV disinfection systems are costly. This study explores the potential of using low-cost UV-LEDs as photometers for monitoring UV intensity in water systems. Reverse LEDs (rLEDs) generate a small current proportional to the incident light intensity on the p–n junction when operated in unbiased mode. rLEDs with different wavelengths and power levels were examined to find the optimal rLED for monitoring the intensity of a 275 nm LED strip, achieving less than 1% deviation from a calibrated spectroradiometer. The influence of temperature was also examined on rLED measurements and found non-negligible. This work demonstrates the feasibility of using rLEDs as intensity monitoring sensors for UV-C LED sources, offering a low-cost and reliable alternative for UV intensity monitoring in UV-LED water disinfection systems.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d3ya00554b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable fermentable sugar production using a glass fiber supported gallium–molybdenum photocatalyst towards bioethanol production: LCA analysis 利用玻璃纤维支撑的镓钼光催化剂生产生物乙醇,实现可持续发酵糖生产:生命周期评估分析
Energy advances Pub Date : 2024-08-16 DOI: 10.1039/d4ya00226a
Rajat Chakraborty, Sourav Barman, Aritro Sarkar
{"title":"Sustainable fermentable sugar production using a glass fiber supported gallium–molybdenum photocatalyst towards bioethanol production: LCA analysis","authors":"Rajat Chakraborty, Sourav Barman, Aritro Sarkar","doi":"10.1039/d4ya00226a","DOIUrl":"https://doi.org/10.1039/d4ya00226a","url":null,"abstract":"For the first time, a cost-effective glass fiber (GF) support derived from waste printed circuit boards (W-PCBs) was utilized to synthesize a reusable GF-supported gallium–molybdenum photocatalyst (GaMo–GF) for generating fermentable sugar (FS) from delignified corncob (DCC) in a quartz halogen solar batch reactor (QHSR). Additionally, this paper presents a comparative detoxification investigation and subsequent fermentation of the resulting FS using <em>Pichia stipitis</em>. The optimum Ga<small><sup>4</sup></small>Mo-GF (with a gallium precursor loading of 4 wt%) photocatalyst exhibited impressive characteristics, including a high specific surface area (28.01 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>), high pore volume (0.04198 cc g<small><sup>−1</sup></small>) and lower band gap energy (2.3 eV), providing a maximum 78.35 mol% FS yield under mild reaction conditions (100 °C and 20 min) with mild energy consumption (12 kJ mL<small><sup>−1</sup></small>). The comparative hydrolysate detoxification study highlighted the superior efficacy of the Amberlite IRP69 cation resin, achieving maximum removal rates of 86% for furfural, 92% for formic acid, and 95% for levulinic acid compared to other methods. Furthermore, the hydrolysate detoxified using Amberlite IRP69 resulted in a higher bioethanol concentration (4.32 mmol mL<small><sup>−1</sup></small>) compared to NaOH neutralization (3.06 mmol mL<small><sup>−1</sup></small>), Ca(OH)<small><sub>2</sub></small> over-liming (2.88 mmol mL<small><sup>−1</sup></small>), and ethyl acetate solvent extraction (3.73 mmol mL<small><sup>−1</sup></small>) when fermented with <em>Pichia stipitis</em>. Additionally, the overall environmental impact assessment indicated that utilizing the Amberlite IRP69 cation resin not only enhanced bioethanol yield but also reduced environmental impacts. Remarkably, the optimized Ga<small><sup>4</sup></small>Mo-GF catalyst demonstrated reusability for up to 7 cycles in the DCC hydrolysis process, showcasing its stability and the consequential reduction in environmental impacts throughout the corncob to bioethanol conversion process.","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of process parameters on woody biomass fractionation in a methanol/water mixture in a semi-flow reactor 半流式反应器中甲醇/水混合物的工艺参数对木质生物质分馏的影响
Energy advances Pub Date : 2024-08-14 DOI: 10.1039/d4ya00261j
Yilin Yao, Eiji Minami, Haruo Kawamoto
{"title":"Effect of process parameters on woody biomass fractionation in a methanol/water mixture in a semi-flow reactor","authors":"Yilin Yao, Eiji Minami, Haruo Kawamoto","doi":"10.1039/d4ya00261j","DOIUrl":"https://doi.org/10.1039/d4ya00261j","url":null,"abstract":"The degradation of woody biomass in methanol/water mixtures at elevated temperatures and pressures is a promising candidate for chemical production from renewable resources, combining the wood-degrading ability of water with the product-dissolving capacity of methanol. However, the effects of water and methanol on wood degradation remain unclear. In the present study, the effect of process parameters on the degradation of Japanese cedar in methanol/water at 270 °C and 10–30 MPa was investigated using a semi-flow reactor in which pressure and temperature can be controlled independently. At 270 °C, hemicelluloses were degraded and solubilized more preferentially at 10 MPa, but delignification was more preferred at 20 and 30 MPa. In the resulting products, methylation of coniferyl alcohol from lignin and methyl esterification of methyl glucuronopentosan from hemicellulose were more advanced at 20 and 30 MPa than at 10 MPa. These results suggest that at 10 MPa the influence of water is dominant and promotes polysaccharide degradation, whereas at 20 and 30 MPa the influence of methanol is dominant and promotes delignification. Our findings will provide insight into the establishment of efficient chemical production from woody biomass with solvolysis technology.","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acid–base concentration swing for direct air capture of carbon dioxide† 直接空气捕集二氧化碳的酸碱浓度摆动†
IF 3.2
Energy advances Pub Date : 2024-08-13 DOI: 10.1039/D4YA00251B
Anatoly Rinberg and Michael J. Aziz
{"title":"Acid–base concentration swing for direct air capture of carbon dioxide†","authors":"Anatoly Rinberg and Michael J. Aziz","doi":"10.1039/D4YA00251B","DOIUrl":"https://doi.org/10.1039/D4YA00251B","url":null,"abstract":"<p >This work demonstrates the first experimental evidence of the acid–base concentration swing (ABCS) for direct air capture of CO<small><sub>2</sub></small>. This process is based on the effect that concentrating particular acid–base chemical reactants will strongly acidify solution, through Le Chatelier's principle, and result in outgassing absorbed CO<small><sub>2</sub></small>. After collecting the outgassed CO<small><sub>2</sub></small>, diluting the solution will result in a reversal of the acid–base reaction, basifying the solution and allowing for atmospheric CO<small><sub>2</sub></small> absorption. The experimental study examines a system that includes sodium cation as the alkalinity carrier, boric acid, and a polyol complexing agent that reversibly reacts with boric acid to strongly acidify solution upon concentration. Though the tested experimental system faces absorption rate and water capacity limitations, the ABCS process described here provides a basis for further process optimization. A generalized theoretical ABCS reaction framework is developed and different reaction orders and conditions are studied mathematically. Higher order reactions yield favorable cycle output results, reaching volumetric cycle capacity above 50 mM for third-order and 80 mM for fourth-order reactions. Optimal equilibrium constants are determined in order to guide alternative chemical searches and synthetic chemistry design targets. There is a substantial energetic benefit for reaction orders above the first, with second- and third-order ABCS cycles exhibiting a thermodynamic minimum work for the concentrating and outgassing steps around 150 kJ per mole of CO<small><sub>2</sub></small>. A significant advantage of the ABCS is that it can be driven through well-developed and widely-deployed desalination technologies, such as reverse osmosis, with opportunities for energy recovery when recombining the concentrated and diluted streams, and extraction can occur directly from the liquid phase upon vacuum application.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00251b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microreactor assisted soft lithography of nanostructured antimony sulfide thin film patterns: nucleation, growth and application in solid state batteries† 纳米结构硫化锑薄膜图案的微反应器辅助软光刻:固态电池中的成核、生长和应用
IF 3.2
Energy advances Pub Date : 2024-08-12 DOI: 10.1039/D4YA00436A
Bryan Chun, V. Vinay K. Doddapaneni, Marcos Lucero, Changqing Pan, Zhongwei Gao, Zhenxing Feng, Rajiv Malhotra and Chih-hung Chang
{"title":"Microreactor assisted soft lithography of nanostructured antimony sulfide thin film patterns: nucleation, growth and application in solid state batteries†","authors":"Bryan Chun, V. Vinay K. Doddapaneni, Marcos Lucero, Changqing Pan, Zhongwei Gao, Zhenxing Feng, Rajiv Malhotra and Chih-hung Chang","doi":"10.1039/D4YA00436A","DOIUrl":"10.1039/D4YA00436A","url":null,"abstract":"<p >This study explores the microreactor-assisted soft lithography (MASL) method for direct, one-step synthesis and patterning of additive-free antimony sulfide (Sb<small><sub>2</sub></small>S<small><sub>3</sub></small>) nanostructured thin films. The results reveal the steady state process and its ability to overcome the challenges and limitations of conventional solution deposition processes. This new approach, exploiting continuous flow, prevents the dissolution of the growing film, a common issue in batch solution deposition methods. Furthermore, this study successfully fabricates functional Sb<small><sub>2</sub></small>S<small><sub>3</sub></small>–Li coin cell prototypes, demonstrating stable specific capacities of 600 mA h g<small><sup>−1</sup></small> for over 260 cycles at a C/2 charge rate and coulombic efficiencies of 96–98%.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00436a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信