Energy advances最新文献

筛选
英文 中文
Composite revolution: unleashing the potential of polymers in sustainable energy and environmental applications 复合材料革命:释放聚合物在可持续能源和环境应用中的潜力
IF 3.2
Energy advances Pub Date : 2025-05-08 DOI: 10.1039/D5YA00088B
Arun Varghese, Kalathiparambil Rajendra Pai Sunajadevi and Dephan Pinheiro
{"title":"Composite revolution: unleashing the potential of polymers in sustainable energy and environmental applications","authors":"Arun Varghese, Kalathiparambil Rajendra Pai Sunajadevi and Dephan Pinheiro","doi":"10.1039/D5YA00088B","DOIUrl":"https://doi.org/10.1039/D5YA00088B","url":null,"abstract":"<p >The rising demand for sustainable solutions to global energy and environmental challenges has accelerated research into advanced functional materials. Conductive polymer composites based on polyaniline (PANI), polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), and chitosan have emerged as promising candidates due to their tunable properties, environmental compatibility, and multifunctionality. This review highlights the energy and environmental applications of polymer-based mixed metal oxide catalysts. These composites show excellent performances in supercapacitance and water splitting applications, offering both efficient energy storage and hydrogen generation solutions and eco-friendly fuel alternatives. Using adsorption and corrosion inhibition techniques, water pollution and corrosion have also been addressed. Polymers such as PANI, PPy, PEDOT, and chitosan, when integrated with metal oxides, heteroatoms, and carbonaceous materials, enhance the functional properties of the composites. These materials demonstrate significant potential in supercapacitors, water splitting, adsorption, and corrosion resistance. The review provides a comparative analysis of different composites, helping readers understand how the incorporation of various components can improve performances. The review emphasizes sustainable approaches to tackle the current energy and environmental issues through advanced polymer-based catalytic systems.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 6","pages":" 743-762"},"PeriodicalIF":3.2,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00088b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urea-driven hydrothermal synthesis of Mn2O3: electrochemical performance across various electrolytes for supercapacitor applications 尿素驱动水热合成Mn2O3:超级电容器在不同电解质中的电化学性能
IF 3.2
Energy advances Pub Date : 2025-05-05 DOI: 10.1039/D5YA00040H
Alisha Dhakal, Felio Perez and Sanjay R Mishra
{"title":"Urea-driven hydrothermal synthesis of Mn2O3: electrochemical performance across various electrolytes for supercapacitor applications","authors":"Alisha Dhakal, Felio Perez and Sanjay R Mishra","doi":"10.1039/D5YA00040H","DOIUrl":"https://doi.org/10.1039/D5YA00040H","url":null,"abstract":"<p >In this study, cubic Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> was synthesized using different urea concentrations (3, 6, 9, and 12 mM) <em>via</em> a hydrothermal method. During synthesis, an increase in urea content resulted in decreased particle and crystallite sizes and increased lattice parameters, with a concomitant increase in the surface area and number of Mn<small><sup>3+</sup></small> ions in Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> particles. The electrochemical performance of the Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample outperformed samples prepared with other urea contents. The Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample exhibited high specific capacitance (<em>C</em><small><sub>sp</sub></small>) values in 1 M and 3 M KOH electrolytes, achieving 881.3 F g<small><sup>−1</sup></small> and 1043.2 F g<small><sup>−1</sup></small>, respectively, at a scan rate of 1 mV s<small><sup>−1</sup></small>. Furthermore, at a current density of 1 A g<small><sup>−1</sup></small>, the <em>C</em><small><sub>sp</sub></small> of Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> in 1 M KOH was 758.5 F g<small><sup>−1</sup></small>. The values increased to 891.4 F g<small><sup>−1</sup></small> with energy density and power density of 44.7 W h kg<small><sup>−1</sup></small> and 398.1 W kg<small><sup>−1</sup></small>, respectively, in 3 M KOH. Owing to the superior electrochemical performance of the Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample, its electrochemical performance was assessed in basic KOH and NaOH and neutral Na<small><sub>2</sub></small>SO<small><sub>4</sub></small> and NaNO<small><sub>3</sub></small> aqueous electrolytes. Moreover, the Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample demonstrated a <em>C</em><small><sub>sp</sub></small> of 721.0 and 446.3 F g<small><sup>−1</sup></small> in 3 M concentrations of NaOH and NaNO<small><sub>3</sub></small> electrolytes, respectively. The Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample with the highest content of Mn<small><sup>3+</sup></small> ions displayed the highest <em>C</em><small><sub>sp</sub></small> in KOH electrolytes compared with the others owing to the smaller hydration radii of K<small><sup>+</sup></small> and high ionic diffusivity and conductivity of OH<small><sup>−</sup></small> compared with other basic and neutral salts. These results highlight that the synthesis process, electrolyte choice, and concentration of electrolytes significantly influence the electrochemical properties of Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> battery-type, emphasizing their critical role in optimizing material performance for supercapacitor applications.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 878-895"},"PeriodicalIF":3.2,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00040h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soft carbon electrodes in capacitive energy extraction: exploring geometry and operational parameters in capacitive mixing systems† 软碳电极在电容能量提取:探索几何和操作参数在电容混合系统†
IF 3.2
Energy advances Pub Date : 2025-04-30 DOI: 10.1039/D4YA00605D
Ana Collazo-Castiñeira, Sergio Orozco-Barrera, Guillermo R. Iglesias, Ángel V. Delgado and Silvia Ahualli
{"title":"Soft carbon electrodes in capacitive energy extraction: exploring geometry and operational parameters in capacitive mixing systems†","authors":"Ana Collazo-Castiñeira, Sergio Orozco-Barrera, Guillermo R. Iglesias, Ángel V. Delgado and Silvia Ahualli","doi":"10.1039/D4YA00605D","DOIUrl":"https://doi.org/10.1039/D4YA00605D","url":null,"abstract":"<p >The global challenge of water scarcity, intensified by a growing population, climate change, and increased demand for fresh water, requires immediate investigation of innovative and sustainable technologies. Capacitive deionization (CDI) and capacitive mixing (CapMix) have emerged as promising solutions, leveraging the electric double layer (EDL) formed at the interface of charged surfaces and electrolytic solutions. The initial technique represents a promising approach to water desalination and ionic separation, as CapMix is a reciprocal technique for energy obtention from exchanging solutions with varying salinity. This study focuses on the use of carbon electrodes with polyelectrolyte (PE) coatings for capacitive energy extraction based on Donnan potential (CDP) in CapMix systems. This investigation considers the impact of applied current, volumetric charge densities of the PEs, and geometric parameters, such as electrode separation distance, on the efficiency and scalability of these systems. The findings provide valuable insights for enhancing energy extraction performance and overcoming challenges associated with electrode use in these applications.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 6","pages":" 776-787"},"PeriodicalIF":3.2,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00605d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of lithium-ion battery components degradation and operational considerations: a safety perspective 从安全角度全面回顾锂离子电池组件的退化和操作考虑
IF 3.2
Energy advances Pub Date : 2025-04-29 DOI: 10.1039/D5YA00065C
Idris T. Adebanjo, Juliana Eko, Anita G. Agbeyegbe, Simuck F. Yuk, Samuel V. Cowart, Enoch A. Nagelli, F. John Burpo, Jan L. Allen, Dat T. Tran, Nishma Bhattarai, Krishna Shah, Jang-Yeon Hwang and H. Hohyun Sun
{"title":"A comprehensive review of lithium-ion battery components degradation and operational considerations: a safety perspective","authors":"Idris T. Adebanjo, Juliana Eko, Anita G. Agbeyegbe, Simuck F. Yuk, Samuel V. Cowart, Enoch A. Nagelli, F. John Burpo, Jan L. Allen, Dat T. Tran, Nishma Bhattarai, Krishna Shah, Jang-Yeon Hwang and H. Hohyun Sun","doi":"10.1039/D5YA00065C","DOIUrl":"https://doi.org/10.1039/D5YA00065C","url":null,"abstract":"<p >As the demand for sustainable energy storage solutions grows, lithium-ion batteries (LIBs) remain at the forefront of modern energy technologies, widely adopted in electric vehicles and energy storage systems. Although they offer high energy densities and reliability, their long-term usage and safety are compromised by complex structural degradation mechanisms and thermal instability, which affect their key components—cathode, anode, and electrolyte—culminating in hazardous events. To comprehensively address these challenges, this review article elaborates on the electrochemical and physicochemical properties of these key components, exploring their structural characteristics, performance in practical applications, and limitations. A thorough understanding of the degradation pathways of the key components along with various strategies to mitigate failure and enhance safety are highlighted. Finally, attention is given to the unique challenges associated with first responder applications with a specific focus on military operations in extreme environments, such as high and subzero temperatures, mechanical shocks, vibrations, and prolonged storage. This review highlights the critical need for advancements in battery design to ensure safety, durability, and long-term usability in demanding environments.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 820-877"},"PeriodicalIF":3.2,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00065c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithiation mechanism of sulfur surfaces during discharge of Li–S batteries from quantum chemical calculations† 锂硫电池放电过程中硫表面锂化机理的量子化学计算
IF 3.2
Energy advances Pub Date : 2025-04-25 DOI: 10.1039/D5YA00050E
Jonas Lührs, Daniel Sebastiani and Pouya Partovi-Azar
{"title":"Lithiation mechanism of sulfur surfaces during discharge of Li–S batteries from quantum chemical calculations†","authors":"Jonas Lührs, Daniel Sebastiani and Pouya Partovi-Azar","doi":"10.1039/D5YA00050E","DOIUrl":"https://doi.org/10.1039/D5YA00050E","url":null,"abstract":"<p >We present a computational study based on quantum-chemical calculations to investigate the initial lithiation reactions on the (001) surface of α-sulfur. The study aims to explore the possible emerging structures during consecutive lithiation steps and to analyze their reaction enthalpies. Our results show that during the first lithiation reactions, S<small><sub>8</sub></small> rings in the lower layers of the (001) surface are preferentially lithiated. In subsequent lithiation steps, we find that S<small><sub>8</sub></small> rings on the upper layers, adjacent to previously lithiated molecules, may also undergo lithiation. Once Li<small><sub>2</sub></small>S<small><sub>8</sub></small> dimers are formed, further reactions on the surface can proceed, leading to the formation of Li<small><sub>2</sub></small>S<small><sub>8</sub></small> trimers in a lower/upper/lower layer arrangement or lower-order Li-polysulfides, such as Li<small><sub>2</sub></small>S<small><sub>6</sub></small>/Li<small><sub>2</sub></small>S<small><sub>2</sub></small> and Li<small><sub>2</sub></small>S<small><sub>5</sub></small>/Li<small><sub>2</sub></small>S<small><sub>3</sub></small>. Notably, in contrast to sulfur reduction reactions in the electrolyte, the formation of Li<small><sub>2</sub></small>S<small><sub>4</sub></small>/Li<small><sub>2</sub></small>S<small><sub>4</sub></small> does not occur on the (001) surface, likely due to the surface morphology, which prevents complete exposure of S<small><sub>8</sub></small> rings to lithium ions. This suggests that surface lithiation predominantly leads to the formation of high-order polysulfides in the early stages of discharge, while the dissolution of these higher-order polysulfides into the electrolyte may facilitate their reduction to Li<small><sub>2</sub></small>S<small><sub>4</sub></small>, a process observed experimentally. Our study provides an atomistic mechanism for the discharge process of Li–S batteries with a crystalline α-sulfur cathode, contributing to a deeper understanding of both solid- and liquid-phase reactions during the early discharge stages.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 6","pages":" 788-795"},"PeriodicalIF":3.2,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00050e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interface engineering strategies for enhanced electrocatalytic hydrogen evolution reaction 增强电催化析氢反应的界面工程策略
IF 3.2
Energy advances Pub Date : 2025-04-17 DOI: 10.1039/D5YA00022J
Manjinder Singh, Dasu Ram Paudel, Hayoung Kim, Tae Hyeong Kim, Jaejun Park and Seunghyun Lee
{"title":"Interface engineering strategies for enhanced electrocatalytic hydrogen evolution reaction","authors":"Manjinder Singh, Dasu Ram Paudel, Hayoung Kim, Tae Hyeong Kim, Jaejun Park and Seunghyun Lee","doi":"10.1039/D5YA00022J","DOIUrl":"https://doi.org/10.1039/D5YA00022J","url":null,"abstract":"<p >Producing hydrogen as a clean and sustainable fuel source requires an in-depth understanding of the hydrogen evolution reaction (HER), which plays a pivotal role in energy conversion processes. Recently, significant interest has been expressed in utilizing transition-metal-based nanomaterials as potential electrocatalysts for the HER owing to their exceptional electrical properties, versatile surface chemistry, and robust catalytic activity. These nanomaterials could enhance the efficiency of hydrogen production when carefully engineered at the interface level. Interface engineering has emerged as a critical strategy for optimizing the surface and interfacial characteristics of nanomaterials, thereby improving their catalytic efficiency. This review provides a comprehensive and detailed overview of the various aspects of interface engineering in the context of transition metal-based nanomaterial electrocatalysts specifically tailored for the HER. The fundamental characteristics of interfaces are described and their role in influencing catalytic performance is emphasized. Key factors, such as atomic arrangements, grain boundaries, and surface imperfections, are explored to better understand their impact on catalytic activity. A range of innovative interface engineering techniques have been used to enhance the catalytic performance of nanomaterial-based electrocatalysts. The techniques include the creation of heterostructures that allow for improved charge separation and enhanced catalytic sites, development of core–shell architectures that can protect active sites while optimizing their accessibility, and manipulation of phase transitions to achieve desirable catalytic properties. Additionally, alloying techniques and the incorporation of single-atom catalysts, which are methods used to fine-tune the electronic and structural attributes of nanomaterials, are discussed. Furthermore, this review highlights recent advancements and prospective pathways in the electrocatalytic processes of the HER and features emerging technologies/methodologies. The review concludes with a thorough discussion of the limitations of nanomaterials, particularly those related to interface stability, scalability, and commercialization of efficient HER electrocatalysts. By providing a detailed examination of the latest innovations and challenges in interface engineering, this paper offers valuable perspectives and guidance for future research and real-world applications aimed at advancing the development of highly efficient electrocatalysts for sustainable hydrogen production.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 6","pages":" 716-742"},"PeriodicalIF":3.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00022j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards green mobility: investigating hydrogen-enriched waste plastic biodiesel blends with n-butanol for sustainable diesel engine applications† 迈向绿色流动性:研究富氢废塑料生物柴油混合物与正丁醇的可持续柴油发动机应用†
IF 3.2
Energy advances Pub Date : 2025-04-15 DOI: 10.1039/D5YA00002E
Ganesan S., Thiruselvam K., Jayavelu S. and Sravanth Chandaka
{"title":"Towards green mobility: investigating hydrogen-enriched waste plastic biodiesel blends with n-butanol for sustainable diesel engine applications†","authors":"Ganesan S., Thiruselvam K., Jayavelu S. and Sravanth Chandaka","doi":"10.1039/D5YA00002E","DOIUrl":"https://doi.org/10.1039/D5YA00002E","url":null,"abstract":"<p >This study examines the performance of pyrolyzed waste plastic biodiesel (WPO) in a compression ignition engine when combined with <em>n</em>-butanol and enriched hydrogen (H<small><sub>2</sub></small>). Initially, low-density polyethylene (LDPE) plastic waste underwent conversion into waste plastic biodiesel <em>via</em> a pyrolysis thermochemical process. Experiments were conducted to evaluate blends consisting of 30% and 40% waste plastic biodiesel. In order to enhance the physical properties of the WPO, an additive consisting of 5% <em>n</em>-butanol (<em>n</em>But5) was introduced, with the objective of improving combustion performance and minimizing exhaust emissions. Furthermore, enriched hydrogen was delivered to the combustion chamber <em>via</em> the inlet manifold at flow rates of 8 and 10 liters per minute (lpm). The findings indicated that the 40% WPO combined with 5% <em>n</em>-butanol demonstrated combustion properties that are similar to those of traditional diesel fuel. Moreover, the integration of the 40 WPO + <em>n</em>But5 blend with 10 lpm enriched hydrogen resulted in a notable reduction in brake specific fuel consumption (BSFC) by 20.89% and an enhancement in brake thermal efficiency (BTE) by 8.22%, alongside a decrease in exhaust emissions, which included a reduction in carbon monoxide (CO) by 43.84%, unburned hydrocarbons (UBHC) by 57.8 ppm, and smoke opacity by 14.70%. Nonetheless, there was a notable increase in nitrogen oxide (NO<small><sub><em>x</em></sub></small>) emissions, which went up by 236 ppm when compared to conventional diesel fuel.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 6","pages":" 763-775"},"PeriodicalIF":3.2,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00002e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dilute anion alloyed III-nitride nanowires for photoelectrochemical water splitting† 用于光电化学水分解的稀阴离子合金iii -氮化物纳米线
IF 3.2
Energy advances Pub Date : 2025-04-02 DOI: 10.1039/D4YA00584H
S. J. Calero-Barney, A. C. Nouduri, A. N. Andriotis, M. Menon and M. K. Sunkara
{"title":"Dilute anion alloyed III-nitride nanowires for photoelectrochemical water splitting†","authors":"S. J. Calero-Barney, A. C. Nouduri, A. N. Andriotis, M. Menon and M. K. Sunkara","doi":"10.1039/D4YA00584H","DOIUrl":"https://doi.org/10.1039/D4YA00584H","url":null,"abstract":"<p >Dilute anion alloyed III-nitride nanowires exhibited band gap reduction to around 2.4 eV with anion concentrations ranging from 5.6 to 8.8 at% and exhibited photoelectrochemical activity (∼8 mA cm<small><sup>−2</sup></small>@10 sun) under AM1.5 visible light. The nanowire electrode also exhibited photoelectrochemical activity using 470 nm wavelength light up to 8.75 mA cm<small><sup>−2</sup></small> at 10 sun (470 nm) radiation. The nanowires are grown using a plasma assisted vapor liquid solid (PA-VLS) technique using N<small><sub>2</sub></small> gas. The anion-alloyed antimony alloyed gallium nitride (GaSb<small><sub><em>x</em></sub></small>N<small><sub>1−<em>x</em></sub></small>) and bismuth alloyed gallium nitride (GaBi<small><sub><em>y</em></sub></small>N<small><sub>1−<em>y</em></sub></small>) wurtzite nanowires were grown using PA-VLS employing gold and copper as metallic seeds on a variety of substrates such as silicon, sapphire, and stainless steel. The PA-VLS technique allowed for increasing the antimony and bismuth incorporation levels with temperature as the dissolution of these species into the metals was favored with growth temperatures. Photoelectrochemical spectroscopy measurements showed light absorption of 620 nm photons in the case of the GaSb<small><sub>0.056</sub></small>N<small><sub>0.944</sub></small> sample.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 5","pages":" 699-707"},"PeriodicalIF":3.2,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00584h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ generation of Cu- and Ag–Sn alloys from metal sulfides for CO2 reduction† 金属硫化物原位生成Cu-和Ag-Sn合金用于CO2还原†
IF 3.2
Energy advances Pub Date : 2025-03-12 DOI: 10.1039/D4YA00603H
Sebastian A. Sanden, Anne Schmidt, Miłosz Kożusznik, Yannik Haver, Yannick Weidemannn, Kevinjeorjios Pellumbi, Sven Rösler, Kai junge Puring, Andrzej Mikuła and Ulf-Peter Apfel
{"title":"In situ generation of Cu- and Ag–Sn alloys from metal sulfides for CO2 reduction†","authors":"Sebastian A. Sanden, Anne Schmidt, Miłosz Kożusznik, Yannik Haver, Yannick Weidemannn, Kevinjeorjios Pellumbi, Sven Rösler, Kai junge Puring, Andrzej Mikuła and Ulf-Peter Apfel","doi":"10.1039/D4YA00603H","DOIUrl":"https://doi.org/10.1039/D4YA00603H","url":null,"abstract":"<p >Ag, Cu and Sn based electrocatalysts promise high CO<small><sub>2</sub></small> reduction kinetics and efficiencies on gas diffusion electrodes. Ag, Cu, Sn sulfide catalysts in particular may offer altered electronic properties and product selectivity, while still being easy to manufacture in scaleable synthesis routes. Comparing the CO<small><sub>2</sub></small> reduction (CO<small><sub>2</sub></small>RR) performance of Cu<small><sub>3</sub></small>SnS<small><sub>4</sub></small>, Ag<small><sub>3</sub></small>SnS<small><sub>4</sub></small>, Cu<small><sub>2</sub></small>S, SnS and Ag<small><sub>8</sub></small>SnS<small><sub>6</sub></small> at 100 mA cm<small><sup>−2</sup></small>, formate is found to be the primary CO<small><sub>2</sub></small>RR product with a faradaic efficiency of 57% for Cu<small><sub>3</sub></small>SnS<small><sub>4</sub></small> and 81% for Ag<small><sub>3</sub></small>SnS<small><sub>4</sub></small>. Characterization by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction revealed the formation of Ag<small><sub>3</sub></small>Sn and Cu<small><sub>3</sub></small>Sn alloys from the corresponding sulfide species during CO<small><sub>2</sub></small>RR. But while the Cu<small><sub>3</sub></small>Sn based electrode surface decomposed into CuO and SnO after 2 h at −100 mA cm<small><sup>−2</sup></small>, metallic Ag<small><sub>3</sub></small>Sn sites on the corresponding electrode surface could be detected by XPS after removing the surface layer. Using density functional theory, the binding energies of *H, *CO and *OCHO on Cu<small><sub>3</sub></small>Sn and Ag<small><sub>3</sub></small>Sn were computed to identify possible catalytic sites. Thereby, Sn was found to render both Cu and Ag highly oxophilic resulting in strong adsorption of carboxylic functionalities, enabling formate production with a partial current density of up to 162 mA cm<small><sup>−2</sup></small>.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 5","pages":" 657-665"},"PeriodicalIF":3.2,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00603h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel electrified sorption enhanced reforming process for blue hydrogen production† 一种新的带电吸附强化重整制蓝氢工艺
IF 3.2
Energy advances Pub Date : 2025-03-11 DOI: 10.1039/D4YA00540F
Abdelrahman Mostafa, Alessandra Beretta, Gianpiero Groppi, Enrico Tronconi and Matteo C. Romano
{"title":"A novel electrified sorption enhanced reforming process for blue hydrogen production†","authors":"Abdelrahman Mostafa, Alessandra Beretta, Gianpiero Groppi, Enrico Tronconi and Matteo C. Romano","doi":"10.1039/D4YA00540F","DOIUrl":"https://doi.org/10.1039/D4YA00540F","url":null,"abstract":"<p >Sorption enhanced reforming (SER) is emerging as a promising solution for the deployment of blue hydrogen and offers the flexibility to accommodate future green feedstocks. This study assesses the techno-economic feasibility of implementing electrified reactors for the endothermic sorbent regeneration step in SER-based hydrogen production plants, introducing the novel electrified sorption enhanced reforming (eSER) process. The analysis is conducted by integrating a 1-D dynamic heterogeneous model of an adiabatic fixed bed reactor into a process model of the complete plant. A natural gas-based hydrogen production plant with 30 000 Nm<small><sup>3</sup></small> h<small><sup>−1</sup></small> capacity is considered, simulating five different cases, two of which are advanced plant configurations designed to capture more than 90% of the feed carbon. Evaluating a set of key performance indicators that covers technical, environmental, and economic aspects of the process, these simulated cases are benchmarked against existing studies utilizing conventional and state of the art steam methane reforming with carbon capture technology from the literature. The findings highlight the remarkable performance of eSER, achieving specific electric consumption of 12–14 kW h per kg<small><sub>H<small><sub>2</sub></small></sub></small> and natural gas to H<small><sub>2</sub></small> conversion efficiency exceeding 100% calculated on a chemical energy basis. For the base case configuration, an overall energy efficiency of the eSER process of 74.3% and a CO<small><sub>2</sub></small> capture rate of 86.3% are computed. For the advanced configurations, energy efficiency of 73.7% and 73.1%, CO<small><sub>2</sub></small> capture rates of 90.3 and 96.6% and levelized cost of hydrogen of 2.50 and 2.52 € per kg<small><sub>H<small><sub>2</sub></small></sub></small> have been obtained.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 5","pages":" 624-638"},"PeriodicalIF":3.2,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00540f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信