Prakash S. Pawar, Pramod A. Koyale, Satyajeet S. Patil, Swapnil R. Patil, Jinho Bae, Nilesh R. Chodankar, Yash G. Kapdi, Saurabh S. Soni, Pramod S. Patil and Sagar D. Delekar
{"title":"无金属染料和聚合物凝胶电解质的TiO2/ZnO纳米复合材料:优化光伏效率和通过时间序列分析评估稳定性","authors":"Prakash S. Pawar, Pramod A. Koyale, Satyajeet S. Patil, Swapnil R. Patil, Jinho Bae, Nilesh R. Chodankar, Yash G. Kapdi, Saurabh S. Soni, Pramod S. Patil and Sagar D. Delekar","doi":"10.1039/D4YA00553H","DOIUrl":null,"url":null,"abstract":"<p >As part of the rapidly advancing field of energy technologies, solar energy-driven studies using nanomaterials have gained significant attention. In this context, designing dye-sensitized solar cells (DSSCs) with nanostructured titania (TiO<small><sub>2</sub></small>) and its composites is a key focus in material selection. This study investigated the synthesis and photovoltaic performance of TiO<small><sub>2</sub></small> nanoparticles (NPs) and their composites with ZnO nanorods (NRs), synthesized <em>via</em> a one-step <em>ex situ</em> approach. The fabricated devices were evaluated using a metal-free SK3 dye (D–π–A carbazole) and a Co<small><sup>2+</sup></small>/Co<small><sup>3+</sup></small>-based polymer gel electrolyte. Structural properties were analyzed using Rietveld refinement, alongside other physicochemical characteristics. Notably, the TiO<small><sub>2</sub></small>/ZnO nanocomposite (TZ-3 NCs) with 30 wt% ZnO NRs in the photoanode demonstrated a significant improvement in solar energy-conversion efficiency (<em>η</em>) of 4.3%, which was 1.8 times higher than that of the TiO<small><sub>2</sub></small>/SK3 NC-based photoanode (2.38%). This enhancement was attributed to the reduced charge-transfer resistance, improved donor density, and increased surface area, facilitating efficient charge transport. Additionally, the study explored the stability of the TZ-3/SK3 NC-based photoanode using time series analysis, a statistical tool that can contribute to understanding its long-term performance.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 4","pages":" 578-587"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00553h?page=search","citationCount":"0","resultStr":"{\"title\":\"TiO2/ZnO nanocomposites with a metal-free dye and a polymer gel electrolyte: optimizing photovoltaic efficiency and assessing stability via time series analysis†\",\"authors\":\"Prakash S. Pawar, Pramod A. Koyale, Satyajeet S. Patil, Swapnil R. Patil, Jinho Bae, Nilesh R. Chodankar, Yash G. Kapdi, Saurabh S. Soni, Pramod S. Patil and Sagar D. Delekar\",\"doi\":\"10.1039/D4YA00553H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As part of the rapidly advancing field of energy technologies, solar energy-driven studies using nanomaterials have gained significant attention. In this context, designing dye-sensitized solar cells (DSSCs) with nanostructured titania (TiO<small><sub>2</sub></small>) and its composites is a key focus in material selection. This study investigated the synthesis and photovoltaic performance of TiO<small><sub>2</sub></small> nanoparticles (NPs) and their composites with ZnO nanorods (NRs), synthesized <em>via</em> a one-step <em>ex situ</em> approach. The fabricated devices were evaluated using a metal-free SK3 dye (D–π–A carbazole) and a Co<small><sup>2+</sup></small>/Co<small><sup>3+</sup></small>-based polymer gel electrolyte. Structural properties were analyzed using Rietveld refinement, alongside other physicochemical characteristics. Notably, the TiO<small><sub>2</sub></small>/ZnO nanocomposite (TZ-3 NCs) with 30 wt% ZnO NRs in the photoanode demonstrated a significant improvement in solar energy-conversion efficiency (<em>η</em>) of 4.3%, which was 1.8 times higher than that of the TiO<small><sub>2</sub></small>/SK3 NC-based photoanode (2.38%). This enhancement was attributed to the reduced charge-transfer resistance, improved donor density, and increased surface area, facilitating efficient charge transport. Additionally, the study explored the stability of the TZ-3/SK3 NC-based photoanode using time series analysis, a statistical tool that can contribute to understanding its long-term performance.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 4\",\"pages\":\" 578-587\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00553h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00553h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00553h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
TiO2/ZnO nanocomposites with a metal-free dye and a polymer gel electrolyte: optimizing photovoltaic efficiency and assessing stability via time series analysis†
As part of the rapidly advancing field of energy technologies, solar energy-driven studies using nanomaterials have gained significant attention. In this context, designing dye-sensitized solar cells (DSSCs) with nanostructured titania (TiO2) and its composites is a key focus in material selection. This study investigated the synthesis and photovoltaic performance of TiO2 nanoparticles (NPs) and their composites with ZnO nanorods (NRs), synthesized via a one-step ex situ approach. The fabricated devices were evaluated using a metal-free SK3 dye (D–π–A carbazole) and a Co2+/Co3+-based polymer gel electrolyte. Structural properties were analyzed using Rietveld refinement, alongside other physicochemical characteristics. Notably, the TiO2/ZnO nanocomposite (TZ-3 NCs) with 30 wt% ZnO NRs in the photoanode demonstrated a significant improvement in solar energy-conversion efficiency (η) of 4.3%, which was 1.8 times higher than that of the TiO2/SK3 NC-based photoanode (2.38%). This enhancement was attributed to the reduced charge-transfer resistance, improved donor density, and increased surface area, facilitating efficient charge transport. Additionally, the study explored the stability of the TZ-3/SK3 NC-based photoanode using time series analysis, a statistical tool that can contribute to understanding its long-term performance.