无金属染料和聚合物凝胶电解质的TiO2/ZnO纳米复合材料:优化光伏效率和通过时间序列分析评估稳定性

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2025-02-24 DOI:10.1039/D4YA00553H
Prakash S. Pawar, Pramod A. Koyale, Satyajeet S. Patil, Swapnil R. Patil, Jinho Bae, Nilesh R. Chodankar, Yash G. Kapdi, Saurabh S. Soni, Pramod S. Patil and Sagar D. Delekar
{"title":"无金属染料和聚合物凝胶电解质的TiO2/ZnO纳米复合材料:优化光伏效率和通过时间序列分析评估稳定性","authors":"Prakash S. Pawar, Pramod A. Koyale, Satyajeet S. Patil, Swapnil R. Patil, Jinho Bae, Nilesh R. Chodankar, Yash G. Kapdi, Saurabh S. Soni, Pramod S. Patil and Sagar D. Delekar","doi":"10.1039/D4YA00553H","DOIUrl":null,"url":null,"abstract":"<p >As part of the rapidly advancing field of energy technologies, solar energy-driven studies using nanomaterials have gained significant attention. In this context, designing dye-sensitized solar cells (DSSCs) with nanostructured titania (TiO<small><sub>2</sub></small>) and its composites is a key focus in material selection. This study investigated the synthesis and photovoltaic performance of TiO<small><sub>2</sub></small> nanoparticles (NPs) and their composites with ZnO nanorods (NRs), synthesized <em>via</em> a one-step <em>ex situ</em> approach. The fabricated devices were evaluated using a metal-free SK3 dye (D–π–A carbazole) and a Co<small><sup>2+</sup></small>/Co<small><sup>3+</sup></small>-based polymer gel electrolyte. Structural properties were analyzed using Rietveld refinement, alongside other physicochemical characteristics. Notably, the TiO<small><sub>2</sub></small>/ZnO nanocomposite (TZ-3 NCs) with 30 wt% ZnO NRs in the photoanode demonstrated a significant improvement in solar energy-conversion efficiency (<em>η</em>) of 4.3%, which was 1.8 times higher than that of the TiO<small><sub>2</sub></small>/SK3 NC-based photoanode (2.38%). This enhancement was attributed to the reduced charge-transfer resistance, improved donor density, and increased surface area, facilitating efficient charge transport. Additionally, the study explored the stability of the TZ-3/SK3 NC-based photoanode using time series analysis, a statistical tool that can contribute to understanding its long-term performance.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 4","pages":" 578-587"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00553h?page=search","citationCount":"0","resultStr":"{\"title\":\"TiO2/ZnO nanocomposites with a metal-free dye and a polymer gel electrolyte: optimizing photovoltaic efficiency and assessing stability via time series analysis†\",\"authors\":\"Prakash S. Pawar, Pramod A. Koyale, Satyajeet S. Patil, Swapnil R. Patil, Jinho Bae, Nilesh R. Chodankar, Yash G. Kapdi, Saurabh S. Soni, Pramod S. Patil and Sagar D. Delekar\",\"doi\":\"10.1039/D4YA00553H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As part of the rapidly advancing field of energy technologies, solar energy-driven studies using nanomaterials have gained significant attention. In this context, designing dye-sensitized solar cells (DSSCs) with nanostructured titania (TiO<small><sub>2</sub></small>) and its composites is a key focus in material selection. This study investigated the synthesis and photovoltaic performance of TiO<small><sub>2</sub></small> nanoparticles (NPs) and their composites with ZnO nanorods (NRs), synthesized <em>via</em> a one-step <em>ex situ</em> approach. The fabricated devices were evaluated using a metal-free SK3 dye (D–π–A carbazole) and a Co<small><sup>2+</sup></small>/Co<small><sup>3+</sup></small>-based polymer gel electrolyte. Structural properties were analyzed using Rietveld refinement, alongside other physicochemical characteristics. Notably, the TiO<small><sub>2</sub></small>/ZnO nanocomposite (TZ-3 NCs) with 30 wt% ZnO NRs in the photoanode demonstrated a significant improvement in solar energy-conversion efficiency (<em>η</em>) of 4.3%, which was 1.8 times higher than that of the TiO<small><sub>2</sub></small>/SK3 NC-based photoanode (2.38%). This enhancement was attributed to the reduced charge-transfer resistance, improved donor density, and increased surface area, facilitating efficient charge transport. Additionally, the study explored the stability of the TZ-3/SK3 NC-based photoanode using time series analysis, a statistical tool that can contribute to understanding its long-term performance.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 4\",\"pages\":\" 578-587\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00553h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00553h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00553h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

作为快速发展的能源技术领域的一部分,利用纳米材料的太阳能驱动研究已经得到了极大的关注。在这种背景下,用纳米结构二氧化钛(TiO2)及其复合材料设计染料敏化太阳能电池(DSSCs)是材料选择的重点。本研究研究了一步法合成的TiO2纳米颗粒(NPs)及其与ZnO纳米棒(NRs)的复合材料的合成和光伏性能。采用无金属SK3染料(D -π-A咔唑)和Co2+/Co3+基聚合物凝胶电解质对制备的器件进行了评价。使用Rietveld细化法分析了结构特性以及其他物理化学特性。值得注意的是,在光阳极中添加30 wt% ZnO NRs的TiO2/ZnO纳米复合材料(TZ-3 NCs)的太阳能转换效率(η)提高了4.3%,是TiO2/SK3 NCs基光阳极(2.38%)的1.8倍。这种增强归因于电荷转移电阻的降低、供体密度的提高和表面积的增加,从而促进了有效的电荷传输。此外,该研究还利用时间序列分析(一种有助于了解其长期性能的统计工具)探索了基于TZ-3/SK3 nc的光阳极的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TiO2/ZnO nanocomposites with a metal-free dye and a polymer gel electrolyte: optimizing photovoltaic efficiency and assessing stability via time series analysis†

TiO2/ZnO nanocomposites with a metal-free dye and a polymer gel electrolyte: optimizing photovoltaic efficiency and assessing stability via time series analysis†

As part of the rapidly advancing field of energy technologies, solar energy-driven studies using nanomaterials have gained significant attention. In this context, designing dye-sensitized solar cells (DSSCs) with nanostructured titania (TiO2) and its composites is a key focus in material selection. This study investigated the synthesis and photovoltaic performance of TiO2 nanoparticles (NPs) and their composites with ZnO nanorods (NRs), synthesized via a one-step ex situ approach. The fabricated devices were evaluated using a metal-free SK3 dye (D–π–A carbazole) and a Co2+/Co3+-based polymer gel electrolyte. Structural properties were analyzed using Rietveld refinement, alongside other physicochemical characteristics. Notably, the TiO2/ZnO nanocomposite (TZ-3 NCs) with 30 wt% ZnO NRs in the photoanode demonstrated a significant improvement in solar energy-conversion efficiency (η) of 4.3%, which was 1.8 times higher than that of the TiO2/SK3 NC-based photoanode (2.38%). This enhancement was attributed to the reduced charge-transfer resistance, improved donor density, and increased surface area, facilitating efficient charge transport. Additionally, the study explored the stability of the TZ-3/SK3 NC-based photoanode using time series analysis, a statistical tool that can contribute to understanding its long-term performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信